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Introduction

Kalman filtering is a tool to predict the time evolution of the state of a system, based on equations of the dynamics
of the system and equations of observation describing the relation between the state vector X and observable
quantities. In this tutorial the time in Kalman Filter models is discrete, with regular intervals, and all unknowns
are finite dimensional vectors. This makes its mathematical basis much simpler than that required by continuous
time models with functions as unknowns, i.e. systems with infinite degrees of freedom. When the dynamics of the
system and the observation equations are linear the main problem of the filter, namely finding the best prediction
of the state at time t based on the known observations up to the same time t, has an exact solution and, when
appropriate hypotheses are set up on the noises of the system and of the observations, it can be fastly computed so
that we can get the solution in Real Time. This is important, specially in navigation applications. When equations
are non-linear though, an exact solution of the filter is typically missing, and one has to resort to approximations. A
linearization approach leads to the so-called Extended Kalman Filter and has wide applications, yet sometimes the
prediction process fails, diverging from the true solution. In addition it is known that the covariance of the prediction
error can be significantly underestimated, so new methods have been studied to find approximate solutions that
must have two characteristics: they must be better than linearized solutions, to avoid the above drawbacks, and
they must be swiftly computable in order to provide results in almost real time.

For instance, an obvious approximation can be built making use of Montecarlo methods; this however requires
a large number of samples extracted from prior distributions. This method is therefore hardly applicable to real
time problems. In the last three decades yet a new method has advanced, called the Unscented Kalman Filter, that,
though resembling the Montecarlo Method, in reality requires a considerably small number of computations, making
it apt to solve real time problems. This tutorial strives to present the linear, extended and unscented filters with
the due mathematical rigour, having in mind an application to kinematic positioning of a cell phone, combining
terrestrial observations with GNSS positioning, which will be object of a final numerical example in the text.

1 An introduction to the stochastic approximation of random variables

Purpose of the section is to recall the solution of the following problem: given a vector random variable (X,Y ), to
find the “best” (in a suitable sense) approximation of X by some function of Y .

Results are mostly recalled without proofs, for which see [15, 13].

Definition 1. Our basic probability sample space is Rn ⊗Rm with a given probability distribution,

(X,Y ) ∈ Rn ⊗Rm , P (dx, dy)

Hypothesis. We assume that P (dx, dy) has finite second order statistics, i.e. there exist finite∣∣∣∣ µX

µY

∣∣∣∣ = E

{∣∣∣∣XY
∣∣∣∣} (1)

C∣∣∣∣∣∣XY
∣∣∣∣∣∣
=

∣∣∣∣CXCXY

CY XCY

∣∣∣∣ = E

{∣∣∣∣X − µX

Y − µy

∣∣∣∣ ∣∣XT − µT
X Y T − µT

Y

∣∣} (2)

Definition 2. L2(X,Y ) is the space of functions g(X,Y ) such that

E{g2(X,Y )} < +∞ . (3)

Remark 1. Since

E{g2(X,Y )} = µ2
g + E{(g(X,Y )− µg)

2} (4)

µg = E{g(X,Y )} =

∫
Rn⊗Rm

g(x, y)P (dx, dy)

(3) is equivalent to: µg and σ(g) are finite,

|µg| < +∞ , σ2(g) = E{(g(x, y)− µg)
2} < +∞ . (5)
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Proposition 1. L2(X,Y ) is a Hilbert space with scalar product

g, h ∈ L2(X,Y ) , < g, h >= E{g(X,Y )h(X;Y )} ≡ µgµh + Cgh ; (6)

namely L2(X,Y ) is complete under the norm

∥ g ∥2L2=< g, g >= E{g2(X,Y )} . (7)

Remark 2. The subspace of L2(X,Y ),

L2
0(X,Y ) = {g ∈ L2 ; µg = 0} (8)

is a closed subspace of L2(X,Y ), i.e. it is a Hilbert space itself. On L2
0(X,Y ) we have{

g ∈ L2
0(X,Y ) ; ∥ g ∥2= σ2(g) =

∫
g2P (dx, dy)

g, h ∈ L2
0(X,Y ) ;< g, h >= Cgh =

∫
ghP (dx, dy) .

(9)

Definition 3. The marginal distributions of (X) and (Y ) are given by

P (dx) ≡
∫
(y)

P (dx dy)

P (dy) ≡
∫
(x)

P (dx dy)
(10)

Remark 3. We have clearly (by Fubini’s theorem)

E{g(X)} =
∫
(x)

g(x)P (dx) ≡
∫
(x,y)

g(x)P (dx dy)

E{h(Y )} =
∫
(y)

h(y)P (dy) =
∫
(x,y)

h(y)P (dx dy) .
(11)

Definition 4. We define L2(X),L2(Y ) as

L2(X) ≡ {g(X) ∈ L2(X,Y )} (12)

L2(Y ) ≡ {h(Y ) ∈ L2(X,Y )} (13)

It is easy to prove that L2(X),L2(Y ) are closed subspaces of L2(X,Y ). This means, e.g. in the case of L2(X), that
if gn(X) ∈ L2(X) and

gn −→
L2(X,Y )

U ∈ L2(X,Y ) , (14)

then necessarily there is a g(X) such that

U = g(X) ∈ L2(X,Y ) . (15)

Definition 5. Let g = g(X,Y ) ∈ L2(X,Y ); we define the conditional mean of g, given Y , as

Fg(Y ) ≡ E{g(X,Y )|Y } ≡ PrL2(Y )[g(X,Y )] (16)

where

PrL2(Y ) = orthogonal projection on L2(Y ) (17)

is the operator of orthogonal (in the sense of L2(X,Y )) projection on L2(Y ). Since L2(Y ) is a closed subspace of
L2(X,Y ), the definition (16) is consistent.

Proposition 2. The conditional mean enjoys the following properties

i) Fg(y) is linear in g, i.e.

Fλg1+µg2(Y ) = λFg1(Y ) + µFg2(Y ) (18)

ii) ∀g ∈ L2(Y ), i.e. g = g(Y )

E{g(Y )|Y } = Fg(Y ) ≡ g(Y ) (19)
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iii) the operator g → Fg is non-expansive, namely

∥ Fg ∥L2(X,Y )≡ E{Fg(Y )2} ≤∥ g ∥2L2(X,Y )= E{g2(X,Y )} (20)

with equality iff g ∈ L2(Y ),

iv) g − Fg⊥L2(Y ), i.e.

< g − Fg, h >≡ E{[g(X,Y )− Fg(Y )]h(Y )} ≡ 0 ∀h ∈ L2(Y ) , (21)

v)

EY {Fg(Y )} = EY {E{g(X,Y )|Y }} ≡ E(X,Y ){g(X,Y )} , (22)

vi)

Fg(y0) =

∫
(x)

g(x, y0)
P (dx, dy(y0))

P (dy(y0))
(23)

where the conditional distribution of X, given Y , is

P (dx, dy(y0))

P (dy(y0))
= lim

|∆y|→0
y0∈∆y

P (dx,∆y)

P (∆y)
(24)

the limit holding P (dy) almost surely, i.e. for dy ∈ S, with P (Y ∈ S) = 1.

vii) assume X and Y are stochastically independent, i.e. equivalently

P (dx, dy) = P (dx)P (dy) , (25)

then ∀g(X), h(Y ) ∈ L2(X,Y ) we have

E{g(X)h(Y )} = EX{g(X)}EY {h(Y )} ; (26)

moreover, in the above hypothesis, the relation

E{g(X)|Y } = E{g(X)} , (27)

holds almost surely.

Proof. i), ii), iii), iv) are standard properties of orthogonal projections. v) comes on taking h(Y ) ≡ 1 in (21). vi)
comes on writing explicitly (21) in the form

∀h ∈ L2(Y ) ,

∫
(x,y)

h(y) · g(x, y)P (dx, dy) ≡
∫
Y

h(y)Fg(y)P (dy)

implying ∫
(x)

g(x, y)P (dx, dy) = Fg(y)P (dy) . (28)

When P (dy) ̸= 0 (28) implies (23), (24).
Finally, question (26) is an obvious consequence of (28) and of the definition of the mean (see (4)). As for (27),

we notice that (26) can be rewritten as

E{g(X)h(Y )} = EY {µgh(Y )} (29)

where µg = EX{g(X)}. On the other hand, using (19), we find

E{g(X)h(Y )} = EY {h(Y )E{g(X)|Y }} ; (30)

so we can write

EY {h(Y )E{g(X)|Y } = EY {µgh(Y )}} (31)

that has to hold for every h(Y ) ∈ L2(Y ).
Therefore (31) implies (27).
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Figure 1: Geometry of Hilbert approximation of g(X,Y ) by projection of L2(X,Y ) onto L2(Y ).

Proposition 3. Fg(y) = E{g(X,Y )|Y } is the “best” approximation of g(X,Y ) with a function of Y only, in the
sense of minimising the distance between g(X,Y ) and h(Y ) ∈ L2(Y ),

Fg = arg min
h∈L2(Y )

∥ g(X,Y )− h(Y ) ∥2L2(X,Y ) , (32)

i.e. the variance of the “prediction error” for a general h(Y ), namely

ε(X,Y ) = g(X,Y )− h(Y ) . (33)

Proof. This is a prominent property of the orthogonal projection on a closed subspace in the Hilbert space L2(X,Y ).

Note: Fg(Y ) can be therefore considered as the solution of the minimum mean square prediction error (m.m.s.e.)
principle (that we call the Wiener–Kolmogorov principle (WK)), applied to g(X,Y ). By using the property (22)
we see that

µF = EY {Fg(Y )} = EY {E{g(X,Y )|Y }} =

= E{g(X,Y )} = µg (34)

Therefore the prediction error can be expressed as

εF = g(X,Y )− Fg(Y ) ≡ (g(X,Y )− µg)− (Fg(Y )− µF ) . (35)

Since εF is orthogonal to Fg(Y )− µF ∈ L2(Y ) (see Fig. 1) we see by the Pythagorean rule that

σ2(εF ) ≡ σ2(g)− σ2(Fg) ≡ (36)

≡ E{[g(X,Y )− µg]
2} − E{[Fg(Y )− µF ]

2}
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Example 1 (normal distribution). Assume that P (dx dy) is normal, namely

P (dx dy) = Gm+n

(∣∣∣∣XY
∣∣∣∣ ;

∣∣∣∣µX

µY

∣∣∣∣ ,

∣∣∣∣CXCXY

CY XCY

∣∣∣∣) dx dy (37)

where the probability density Gk(t;µT , CT ) is given by{
Gk(t;µT .CT ) =

1

2πk/2
√

det(CT )
e−

1
2Q

Q = (t− µT )
TC−1

T (t− µT ) .
(38)

On using the formula of the blockwise inverse of C∣∣∣∣∣∣XY
∣∣∣∣∣∣
,

∣∣∣∣ CX CXY

CY X CY

∣∣∣∣−1

=

∣∣∣∣ Γ−1 −Γ−1CXY C
−1
Y

−C−1
Y CY XΓ−1 C−1

Y + C−1
Y CY XΓ−1CXY C

−1
Y

∣∣∣∣ (39)

(Γ = CX − CXY C
−1
Y CY X) ,

the quadratic form of the normal (38) can be decomposed as{
Q = (x− µX |Y )TΓ−1(x− µX |Y ) + (y − µY )

TC−1
Y (y − µY )

µX |Y = µX + CXY C
−1
Y (y − µY ) .

(40)

Moreover, a similar formula for the determinants of a block-partitioned matrix gives

det

∣∣∣∣ CX CXY

CY X CY

∣∣∣∣ = det(CY ) det(Γ) . (41)

Therefore we see that the probability distribution of (X,Y ) is partitioned according to

P (dx, dy) = Gn(x;µX |Y ,Γ)dxGm(y;µY , CY )dy . (42)

Since

P (dy) =

∫
(x)

P (dx dy) ≡ Gm(y;µY , CY )dy (43)

from (42), (43) and (23) we see that, taken any g = g(X) we have

Fg(Y ) =

∫
(x)

g(x)Gn(x;µX |Y ,Γ)dx , (44)

which at once shows that the conditional distribution P (dx|Y ) is given by

P (dx|Y ) = Gn(x;µX |Y ,Γ)dx . (45)

This in turn means that

FX(Y ) ≡ E{X|Y } = µX |Y ≡ µX + CXY C
−1
Y (Y − µX) , (46)

namely the conditional mean of X given Y in a normal family is a linear, affine function of Y . In particular (46) is
affine because by putting Y = 0 into it we get, in general

E{X|Y = 0} = µX |Y = µX − CXY C
−1
Y µY ̸= 0 . (47)

Furthermore, the covariance of the prediction error ε,

ε = X − [µX + CXY C
−1
Y (Y − µY )] = X − µX |Y , (48)

is read out of (38), (39), (40) as

Cε = Γ = CX − CXY C
−1
Y CY X . (49)
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Remark 4. Strictly speaking, the Definition 5 of conditional mean has been given for a scalar variable g, yet it
is clear that the definition can be extended to any vector function g(X,Y ) by applying (16) component-wise. In
this way the notation FX(Y ), for the vector X, is justified. Moreover, recalling the minimum mean square error
(m.m.s.e.) property illustrated in Proposition 3, we could say that FX(Y ) satisfies the WK principle

FX(Y ) = arg min
h∈[L2(Y )]n

E{|X − h(Y )|2} , (50)

where h(Y ) is a vector of n components, each of which has to belong to L2(Y ).
As for the prediction error

ε = X − FX(Y ) , (51)

we can easily find its dispersion, i.e. the covariance matrix Cε, by generalizing the orthogonality criterion used in
(36).

We find then

Cε = CX − CFX
. (52)

Definition 6. We define the linear space

L2(Y ) ≡ {hTY + ℓ , ∀h ∈ Rm, ℓ ∈ R} . (53)

On account of the relation

∥ hTY + ℓ ∥2L2(X,Y )= E{(hTY + ℓ)2} = (ℓ+ hTµY )
2 + hTCY h (54)

it is clear that

L2(Y ) ⊂ L2(Y ) ⊂ L2(X,Y ) .

Furthermore, assuming that CY is strictly positive definite, as we do, the L2(Y ) convergence of a sequence {hT
k Y+ℓk}

is equivalent to the ordinary, termwise convergence of {hT
k , ℓk} in Rm ⊗R.

Therefore L2(Y ) is a closed subspace of L2(X,Y ), so that the orthogonal projection theorem in L2(X,Y ) holds
for this space. A similar definition can be adopted for L2(X) and even for

L2(X,Y ) ≡ {kTX + hTY + ℓ ; k ∈ Rn , h ∈ Rm , ℓ ∈ R} (55)

Proposition 4. Given any U ∈ L2(X,Y ) there is only one U |Y ∈ L2(Y ), called the linear regressor of U on Y
satisfying the WK principle, namely

U |Y = argmin
hT ,ℓ

E{(U − hTY − ℓ)2} , (56)

given by

U |Y = µU + CUY C
−1
Y (Y − µY ) , (57)

i.e.

ℓ = µU − CUY C
−1
Y µY , h = C−1

Y CY U ; (58)

the mean square (m.s.) prediction error of U |Y is given by

E{(U − U |Y )2} = σ2
U − CUY C

−1
Y CY U . (59)

Proof. We compute

E{[U − (hTY + ℓ)]2} = (60)

= E{[(U − µU )− hT (Y − µY ) − (ℓ− µU + hTµY )]
2} =

= |ℓ− µU + hTµY |2 + σ2
U − 2hTCY U + hTCY h .

Then finding the minimum of (60) with respect to h, ℓ is an ordinary l.s. problem, the solution of which yields (57),
(58), (59).
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Proposition 5. Proposition 4 generalizes to the approximation of any vector V ∈ [L2(X,Y )]p, i.e. a random vector
on Rp, with the linear regression formulas

V |Y = µV + CV Y C
−1
Y (Y − µY ) (61)

ε = V − V |Y = V − µV − CV Y C
−1
Y (Y − µY ) (62)

Cε = CV − CV Y C
−1
Y CY V (63)

Remark 5. In particular, by choosing V = X we find the linear regressor of X on Y

X|Y = µX + CXY C
−1
Y (Y − µY ) (64)

with prediction error covariance

Cε = CX − CXY C
−1
Y CY X . (65)

As we see, not by chance, these formulas are identical to the general regression formulas for normal variates
(46), (49). This happens because it is intrinsic to the shape of normal distributions to have a regression function
which is linear in Y . However, in the definition of the linear regressor no hypothesis is done on the distribution
P (dx, dy).

The large number of applications of (64), (65) is due to the fact that often a normal approximation of P (dx, dy)
gives good results. It is clear that a condition for the linear regressor to be “good” is exactly that the general
regressor

E{X|Y } = FX(Y ) (66)

can be reasonably approximated by a linear function in the volume of (X,Y ) where most of the probability is con-
centrated (see Appendix). The theory of Unscented Transforms is designed to improve on this linear approximation
by a simple, numerically efficient approach.

Definition 7. As we have done in Remark 2 with respect to L2(X,Y ), we can define a subspace of L2(X,Y ) (see
(55)) as

L2
0(X,Y ) ≡ {kT (X − µX) + hT (Y − µY ) ; k ∈ Rn, h ∈ Rm} (67)

of linear functions of (X,Y ) that have zero average too. It is clear that L2
0(X,Y ) = L2

0(X,Y ) ∩ L2(X,Y ), and
therefore it is a closed subspace of both.

Moreover, also in this case we can generalize (67) to any random vector V ∈ [L2
0(X,Y )]p, i.e.

[L2
0(X,Y )]p ≡ (68)

≡ {V = A(X − µX) +B(Y − µY ) ; A ∈ Rp ⊗Rn, B ∈ Rp ⊗Rm} .

In particular, for (X,Y ) with 0 average, the regression formula (64) reads

X|Y = CXY C
−1
Y Y , (69)

while the covariance of the corresponding prediction error ε, is always given by (65). Finally we observe that often
in mathematical literature L2

0(X,Y ) is also called the span of (X − µX , Y − µY ), i.e. the subspace generated by
linear combinations of X − µX and Y − µY .

Remark 6. Assume that Y is split into two vectors Y = (Y1, Y2), Y1 ∈ Rm1 , Y2 ∈ Rm2 ,m1 +m2 = m, which are
uncorrelated, namely

CY1Y2
= E{(Y1 − µY1

)(Y2 − µY2
)T } = 0 (70)

then clearly the covariance CY is block-diagonal, hence

C−1
Y =

∣∣∣∣ C−1
Y1

0

0 C−1
Y2

∣∣∣∣ ; (71)
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accordingly we see that the following nice orthogonal decomposition holds

X − µX |Y = CXY C
−1
Y (Y − µY ) = CXY1C

−1
Y1

(Y1 − µY1) +

+CXY2
C−1

Y2
(Y2 − µY2

) = (72)

= (X − µX)|Y1
+ (X − µX)|Y2

.

In particular, when X has zero average (72) becomes simply

X|Y = X|Y1 +X|Y2 (73)

a formula that will be useful in the sequel.

2 The Kalman Filter: linear theory

Definition 8 (Discrete time Dynamic System). We consider the time evolution of a system described by a state
vector {Xt} ∈ Rn. We consider the time t as a discrete variable

t = 0, 1, 2 . . . (74)

The evolution law of the System is given by the linear equation

Xt+1 = Dt+1Xt + ut+1 +Qt+1νt+1 , (75)

where {Dt} is a sequence of dynamic matrices, ut+1 a sequence of deterministic inputs, {νt} a sequence of random
noises, white in time, such that

E{νt} = 0 , E{νtνTt′ } = δtt′Cνt
. (76)

The presence of the matrix Qt+1 is necessary in the dynamic model because many times we want to apply the noise
only to some specific component of Xt, so that in general the dimension of νt is smaller than that of Xt. Since
(75) is a difference equation, we need to specify initial conditions to identify unambiguously a solution.. To make
it simple, we assume that

X0 = 0 with P = 1 (77)

so that we can claim that

CX0
= 0 . (78)

Indeed X0 could be any other constant vector, with (78) being always valid.

Definition 9 (Observations model). We assume that at each discrete time t we are able to perform an “observation”
on the system, which is described by a linear vector function of {Xt} plus some observation noise, i.e.

Y t ∈ Rm , Y t = MtXt + ηt , (t = 1, 2 . . .) (79)

where Mt is a constant (i.e. not random) matrix.
We assume that ηt is a noise, white in time, i.e.

E{ηt} = 0 , E{ηtηTt′} = δtt′Cηt
(80)

with Cηt
strictly positive. Indeed there is no need to add to the vector of observables Y t a component that would

be fully linearly dependent on the others. Moreover, we make the hypothesis that the observation noise {ηt} is
stochastically independent of the system noise {νt}; this implies

t′, t′′ = 1 . . . t+ 1 , Cηt′νt′′ = E{ηt′νTt′′} = 0 (81)

Let us notice that we do not need to add a constant vector to the model (79) because this can always be included
it into the definition of Y t.
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The problem (first formulation)

Given the system (75), the initial condition (77) and the information coming from the observation vectors {Y t′ ; t
′ =

1, 2 . . . t+ 1}, assuming that {νt′}, {ηt′} satisfy (76), (80), (81), to find the prediction of the sequence {Xt′ ; t′ =
1 . . . t+ 1} optimal in the WK sense.

This is what one of the authors has called Geodetic Navigation (see [16]) and can be solved equivalently either
by a batch least squares algorithm, or by a two-stage algorithm, one flowing from the time t′ = 1 to t′ = t+ 1,
called the Kalman Filter, the other flowing back, called the Kalman Smoother (see [7]).

Here we are interested in the Kalman Filter part of the process, because this is particularly suited to the realtime
navigation problem, where the question is to get the best estimate of Xt for any time t, given all the observations
up to this instant, without waiting for information coming in the future. As we are going to see, this problem has
a nice sequential solution, easy to be numerically implemented.

The reduced problem (second formulation, the Kalman Filter)

We are looking for the best linear predictor of Xt′ given I
T

t′ = [Y
T

1 . . . Y
T

t′ ], (t
′ = 1 . . . t + 1) and the associated

covariance matrix of the prediction error.
In abstract the solution of this problem is given by formula (64), (65), nevertheless it is convenient to reduce

them to a recursive scheme which is the essence of the Kalman Filter.
Before doing that, it is useful to separate in all random variables the part of the mean from the stochastic

residual, namely we put

Xt = µXt
+Xt , E{Xt} = 0 (82)

Y t = µY t
+ Yt , E{Yt} = 0 (83)

Taking the average of (75), (79), we find

µXt+1
= Dt+1µXt

+ ut+1 (84)

µY t+1
= Mt+1µXt+1

(85)

It follows that the recursive equations (84), (85) can determine µXt+1
at any time, starting from the known

µX0
= 0, and subsequently µY 0

.
It is interesting to write explicitly the solution of (84). We introduce the “propagator” matrix from time τ to

time t+ 1 as

Φt+1,τ =

t+1∏
k=τ+1

Dk , Φt+1,t+1 = I (86)

and we find that

µXt+1
=

t+1∑
τ=1

Φt+1,τuτ , (87)

as one can easily verify by substituting in (84).
In particular, if we use (87) with t = 0, τ = 1 and consider that Φ11 = I, we get

µX1
= u1 (88)

as it is already obvious from (84), because µX0
= 0. Due to the linearity of our equations the stochastic part of the

system and of the observations, run according to the laws

Xt+1 = Dt+1Xt +Qt+1νt+1 , (89)

Yt+1 = Mt+1Xt+1 + ηt+1 . (90)

We underline that, since both Y t′ and µY t′
are known, the same holds for

Yt′ = Y t′ − µY t′
, t′ = 1 . . . t+ 1 . (91)

9



Remark 7. By applying (86), (87) to (89) we see that

Xt+1 =

t+1∑
τ=1

Φt+1,τQτντ : (92)

then it is clear that, if we put

NT
t′ ≡ [νT1 ν

T
2 . . . νTt′ ] , (93)

we have

Xt′ ∈ [L2
0(Nt′)]

n t′ = 1 . . . t+ 1 (94)

and in particular, due to (76),

Xt′ =

t′∑
τ=1

Φt′,τQτντ (95)

is an orthogonal decomposition of Xt′ on the orthogonal basis of L2
0(Nt+1) given by the components of the noise

Nt+1.

An easy consequence of (94) is that no Xt′ can depend on future noises νt(t > t′), i.e. Xt′ and νt are uncorrelated
or orthogonal,

E{Xt′ν
T
t } = 0 , t > t′ . (96)

On the other hand, the ηt′ are orthogonal to one another(uncorrelated) and also orthogonal to [L2
0(Nt+1)]

n due to
(81). So (90) is an orthogonal decomposition of Yt+1 and, as we see,

Yt′ ∈ [L2
0(Nt′ , ηt′)]

m . (97)

To continue it is useful to define a number of new random variables

Definition 10. We define

i) ITt+1 ≡ [Y T
i . . . Y T

t+1]

ii) X̂t′ = Xt′ |It′
iii) ε̂t′ = Xt′ − X̂t′ , (prediction error of X̂t′)

iv) X̃t′+1 = Xt′+1|It′
v) Ỹt′+1 = Yt′+1|It′
vi) ε̃t′+1 = Xt′+1 − X̃t′+1(prediction error of X̃t′+1)

vii) δYt+1 = Yt+1 − Yt+1|It ≡ Yt+1 − Ỹt+1

Remark 8. Let us recall that given two zero mean vectors X,Y, X|Y is just the orthogonal projection, componen-
twise, of X on L2

0(Y ) so that X|Y ∈ [L2
0(Y )]n and its prediction error ε = X −X|Y is orthogonal (uncorrelated) to

[L2
0(Y )]n. Therefore, from the above definition we can deduce that

X̂t′ , X̃t′+1 ∈ [L2
0(It′)]

n (98)

ε̂t′ , ε̃t′+1⊥[L2
0(It′)]

n ; (99)

more precisely

ε̂t′ ∈ [L0(Nt′ , It′)]
n (100)

ε̃t′+1 ∈ [L0(Nt′+1, It′)]
n . (101)

Furthermore, we have

δYt+1⊥[L2
0(It)]

m . (102)

Finally, by (102) we can claim that

L2
0(It+1) = L2

0(It, Yt+1) = L2
0(It, δYt) . (103)

10



Proposition 6 (Sequential solution of the Kalman Filter). Our target is to establish a sequential algorithm to

compute X̂t+1 and Cε̂t+1
.

The solution is given by formulas where, from X̂t, Cε̂t one can derive X̂t+1, Cε̂t+1
and the initial formulas of the

sequence, giving X̂1, Cε̂1 :

• X̂tt+1
= X̃t+1 +Kt+1M

T
t+1(Mt+1Kt+1M

T
t+1 + Cηt+1

)−1δYt+1 ; (104)

where

X̃t+1 = Dt+1X̂t (105)

δYt+1 = Yt+1 − Ỹt+1 = Yt+1 −Mt+1X̃t+1 (106)

Kt+1 = Dt+1Cε̂tD
T
t+1 +Qt+1Cνt+1Q

T
t+1 , (107)

and

• Cε̂t+1
= Kt+1 −Kt+1M

T
t+1C

−1
δYt+1

Mt+1Kt+1 (108)

where

CδYt+1
= Mt+1Kt+1M

T
t+1 + Cηt+1

(109)

The initialization of the algorithm is given by

• X̂1 = K1M
T
1 C−1

η1
δY1 (110)

• Cε̂1 = K1 −K1M
T
i C−1

Y1
M1K1 (111)

where K1 = Q1Cν1Q
T
1 and CY1 = M1K1M

T
1 + Cη1 .

Proof. Before starting the proof, let us recall that all vectors here have zero mean, so that the concepts of zero
correlation and orthogonality do coincide. We know that

X̂t+1 = Xt+1|It+1 ≡ Xt+1|It,δYt+1 .

Recalling that It and δYt+1 are orthogonal (see (102)) and that X|Y is the orthogonal projection of X on L2
0(Y ),

we can write

X̂t+1 = Xt+1|It +Xt+1|δYt+1
= (112)

= X̃t+1 + LδYt+1 ,

where, according to (69),

L = CXt+1δYt+1
C−1

δYt+1
, (113)

From the dynamic equation (89) we find

X̃t+1 = Xt+1|It = Dt+1Xt|It +Qt+1νt+1|It (114)

On the other hand, νt+1 is orthogonal to all ηt′ and to all past Xt′ and therefore to the whole It, so νt+1|It ≡ 0.
Taking into account the definition (98), we see that (114) reads

X̃t+1 = Dt+1X̂t . (115)

So (105) is proved and since X̂t is assumed to be known X̃t+1 is known too.
From (90) we find

Ỹt+1 = Yt+1|It = Mt+1Xt+1|It + ηt+1|It . (116)

11



But

Xt+1|It = X̃t+1 ∈ [L2
0(It)]

m ; (117)

moreover, ηt+1 is orthogonal to all Yt′ , t
′ ≤ t, by (97) and so it is orthogonal to the whole It, which yields

ηt+1|It = 0 . (118)

Therefore (115) reads

Ỹt+1 = Mt+1X̃t+1 (119)

what proves (106). Since X̃t+1 is known, so are Ỹt+1 and δYt+1 = Yt+1 − Ỹt+1.
Now, let us write

δYt+1 = Yt+1 − Ỹt+1 = Mt+1(Xt+1 − X̃t+1) + ηt+1 = (120)

= Mt+1ε̃t+1 + ηt+1 .

On the other hand, recalling (89) and (115),

ε̃t+1 ≡ Dt+1(Xt − X̂t) +Qt+1νt+1 = (121)

= Dt+1ε̂t +Qt+1νt+1 .

From (100) we know that ε̂t is a linear function of Nt and It, so that (121) is an orthogonal decomposition
because νt+1 is orthogonal to both; therefore, according to the definition (107),

Cε̃t+1
= Dt+1Cε̂tD

T
t+1 +Qt+1Cνt+1

QT
t+1 = Kt+1 . (122)

Since we assume to know Cε̂t ,Kt+1 is a known matrix too. Moreover, since ηt+1 is orthogonal to νt+1 and to
ε̂t, also (120) is an orthogonal decomposition and we find

CδYt+1 = Mt+1Kt+1M
T
t+1 + Cηt+1 . (123)

Further on, using (120) and recalling that ηt is orthogonal to all Xt′ ∈ Nt′ , we get

CXt+1δYt+1
= CXt+1ε̃t+1

MT
t+1 . (124)

But

Xt+1 = X̃t+1 + ε̃t+1 (125)

is by definition an orthogonal decomposition, so that CX̃t+1ε̃t+1
= 0 and

CXt+1ε̃t+1
= Cε̃t+1

= Kt+1 (126)

Putting together (126), (124) and (123) into (113) we find

Lt+1 = Kt+1M
T
t+1(Mt+1Kt+1M

T
t+1 + Cηt+1

)−1 (127)

that inserted into (112) gives (104).
Next we use (104) in the definitions of ε̂t+1, ε̃t+1 to see that

ε̂t+1 = Xt+1 − X̂t+1 = ε̃t+1 − Lt+1δYt+1 (128)

with Lt+1 as in (127).
On the other hand, ε̂t+1 is orthogonal to (It, δYt), so rewriting (128) as

ε̃t+1 = ε̂t+1 + LδYt+1 = (129)

= ε̂t+1 +Kt+1M
T
t+1C

−1
δYt+1

δYt+1

12



we arrive at the relation

Cε̃t+1
= Cε̂t+1

+Kt+1M
T
t+1C

−1
δYt+1

Mt+1Kt+1 . (130)

Inverting (130) and recalling (122) we get

Cε̂t+1
= Kt+1 −Kt+1M

T
t+1C

−1
δYt+1

Mt+1Kt+1 (131)

and (108) is proved.
Finally (110) and (111) are nothing but (104), (108) when we take into account that

X0 ≡ 0 , X1 = Q1ν1 , X̃1 = 0 , Ỹ1 = 0 , δY1 ≡ Y1 .

The proof of Proposition 6 is complete.

At the level of names we observe that often in Kalman Filter literature equations (105), (107) are called the
prediction part, while (104), (108) are called the update part of the filter.

Remark 9. Since it is well-known that the optimal prediction of the random variable X in a linear model,

Y = AX + ν (132)

with the addition, in a Bayesian fashion, of some prior information on X, e.g.

X0 = X + e (133)

is equivalent to a least squares solution, where X is now considered a deterministic parameter estimated from (132),
(133) for instance assuming to know Cν and Ce and that ν and e are not correlated, it seems here interesting to
explore in the present context the equivalence between the two points of view. In our case, in fact, we have an
information, coming from the past of the series (Xt, Yt), which is summarized by X̃t+1; we can write

X̃t+1 = Xt+1 − ε̃t+1 (134)

with

Cε̃t+1
= Kt+1 (135)

as given in (122).
To this we can add the observation equation

Yt+1 = Mt+1Xt+1 + ηt+1 (136)

with a known Cηt+1 . Moreover, we have already clarified that ηt+1 and ε̃t+1 are orthogonal to one another, while
discussing equation (120).

The answer to the above question is supplied by the following proposition.

Proposition 7 (the Equivalence Lemma). The WK predictor of the random variable Xt+1 given by (104) is the
same as the least squares estimator with “observation equations” (134), (136) and covariance∣∣∣∣Kt+1 0

0 Cηt+1

∣∣∣∣ (137)

so that the solution (104) can be understood in the light of either two interpretations.

Proof. We start by providing the l.s. solution of (134), (136), (137). We notice that the design matrix A is in this
case

A =

∣∣∣∣ I
Mt+1

∣∣∣∣ (138)
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so that the normal matrix S is

St+1 = [I MT
t+1]

[
K−1

t+1 0
0 C−1

ηt+1

] [
I

Mt+1

]
= (139)

= (K−1
t+1 +MT

t+1C
−1
ηt+1

Mt+1)

The l.s. solution of the problem is then

x̂ls = S−1
t+1(K

−1
t+1X̃t+1 +MT

t+1C
−1
ηt+1

Yt+1) . (140)

Now we use the matrix identity

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 , (141)

valid for all invertible A,C and for B,D with dimensions suitable to make A+BCD an invertible square matrix.
After introducing the convenient abbreviation (see (123))

Cηt+1
+Mt+1Kt+1M

T
t+1 ≡ CδYt+1

(142)

we get from (140),

X̂ls = (Kt+1 −Kt+1M
T
t+1C

−1
δYt+1

Mt+1Kt+1)
−1(K−1

t+1X̃t+1 +MT
t+1C

−1
ηt+1

) . (143)

After multiplying the parentheses and using the identity (see (142))

C−1
δYt+1

Mt+1Kt+1M
T
t+1 = I − C−1

δYt+1
Cηt+1

, (144)

we find

X̂ls = X̃t+1 −Kt+1M
T
t+1C

−1
δYt+1

Mt+1X̃t+1 + (145)

(Kt+1M
T
t+1C

−1
ηt+1

−Kt+1M
T
t+1C

−1
ηt+1

+Kt+1M
T
t+1C

−1
δYt+1

)Yt+1

= X̃t+1 +Kt+1M
T
t+1C

−1
δYt+1

(Yt+1 −Mt+1X̃t+1) .

Since Yt+1 −Mt+1X̃t+1 = Yt+1 − Ỹt+1 = δYt+1, a quick comparison with (104) shows that in fact X̂ls = X̂t+1,
namely the equivalence is established. A similar reasoning shows that the estimation error covariance matrix of the
l.s. estimator

CX̂ls
= S−1

t+1 (146)

is equal to the prediction error covariance matrix Cε̂t+1
, given by (108).

Remark 10 (computability). Although equivalent on an analytical ground the two solutions (104) and (140) do
not share the same numerical properties.

In fact (104) and (108) require the solution of systems of dimension m, while (140) and (146) are reduced to
the solution of systems of dimension n. There are problems where n (state dimension) is much larger than m
(observation vector dimension); for instance this happens in oceanography or in atmospheric dynamics (see [3], [4]).
In this case formulas (104), (108) are recommended. In the case of GNSS–INS aided navigation for instance n is
typically smaller than m so that the least squares formulas (140), (146) are numerically advantageous.

Remark 11 (non-zero average model). We would like to remove the limitation that we have put on the dynamic
system by assuming that X0 = 0 with P = 1. Let us first consider the case that we know that the trajectory of
states starts from a known constant point X0 ̸= 0. If we go back to the original dynamic model (75) and to the
subsequent discussion it is obvious that the solution of the evolution equation can be written as

Xt = Xht + Ut +Xt (147)

where

Xht = Φt,0X0, Ut =

t∑
τ1

Φt,τuτ ; (148)
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here the suffix h stems for homogeneous. Accordingly, the best predictor X̂t of Xt on the basis of the information
contained in It is

X̂t = Φt,0X0 + Ut + X̂t , (149)

where X̂t is the sequential solution of the Kalman Filter described in Proposition 6. It follows that

ε̂t = Xt − X̂t = Xt − X̂t = ε̂t (150)

so that the covariance of the prediction error is the same as that of the stochastic part

Cε̂t
= Cε̂t (151)

given in Proposition 6.
However, it is not common to have a precise knowledge of the initial state vector X0, rather we often have a

guess for the value of its entries and a guess for how large can be the error of such a knowledge.
We formalize the situation by assuming that we have an observation equation at time 0, namely

Y0 = X0 + η0 , (152)

with

E{η0} = 0 , Cη0
= σ2

0I ; (153)

here the choice of the covariance is just dictated by a criterion of simplicity and the value of σ2
0 should be large

enough to accommodate for the vague information we have on X0.
With this prior information we can augment the observations vector by including Y0 in the first position, namely

by defining

It =

∣∣∣∣∣∣∣∣
Y0

Y1

. . .
Yt

∣∣∣∣∣∣∣∣ . (154)

Now we can reconsider the construction of the Kalman Filter starting from the first step, i.e. from

X1 = D1X0 + u1 +Q1ν1 . (155)

It is clear that we cannot simply proceed by conditioning (155) to I0, i.e. to Y0, because X0, though unknown,
is a constant and we would have

X1|I0
= D1X0 + u1 (156)

which is of no use, precisely because we don’t know X0. Since the only information on X0 we have i Y0 itself, a
common sense choice here is to call

X̃1 = D1Y0 + u1 (157)

which we can compute, and subsequently

ε̃1 = X1 − X̃1 = −D1η0 +Q1ν1 . (158)

From here on we follow the logical development of the Kalman Filter, interpreted as a sequential least squares
algorithm.

We collect the information we have on X1 in the two equations{
X̃1 = X1 − ε̃1
Y1 = M1X1 + η1

(159)
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where X̃1 is given by (157) and its error ε̃1 is given by (158), with covariance

Cε̃1
= σ2

0D
T
1 +Q1Cν1

QT
1 = K1 . (160)

Since η1 is independent if η0 and η1, and hence on ε̃1 too (see (158)), the least squares solution of (159) is given
by

X̂1 = (K−1
1 +MT

1 Cη1M1)
−1(K−1

1 X̃1 +MT
1 C−1

η1
Y1) (161)

with

ε̂1 = X1 − X̂1 ; C−1
ε̂1

= (K−1
1 +MT

1 Cη1
M1)

−1 . (162)

Running in revers order the proof of Proposition 7 we see that (161), (162) are equivalent to

X̂1 = X̃1 +K1M
T
1 (M1K1M

T
1 + Cη1

)−1(Yt+1 − Ỹt+1) , (163)

where we have put

Ỹ1 = M1X̃1 , (164)

and

Cε̂1
= K1 −K1M

T
1 (M1K1M

T
1 + Cη1

)−1M1K1 . (165)

A quick comparison with (104), (108) shows that (163), (164) follow the general form of the previously derived

Kalman Filter, with the only difference that in the present case neither X̂1 nor X̃1 are zero mean variates.
The same consideration can be done for the subsequent steps, so that the formulas of filter continue to be valid,

only triggered by the initial solution (163), (165).

Yet it has to be stressed that the symbols X̂t, X̃t used in this remark are not exactly the same as those defined
in the previous part of this section. In particular, it is not true that

X̂t = Xt|It
. (166)

In fact, in our derivation here, we cannot advocate the orthogonal decomposition (112) because in this case It
and Yt+1 − Ỹt+1 are not anymore orthogonal. One can see that already in the first step, namely that

E{δY1Y
T
0 } ≠ 0 . (167)

In fact, recalling (164) and (157),

E{δY1Y
T
0 } = E{[M1(D1X0 + u1 +Q1ν1)−M1(D1Y0 + u1) +

+η1][X0 + η0]
T } = −M1D1E{η0ηT0 } = −σ2

0M1D1 . (168)

As a matter of fact, to derive optimal estimates one should use a batch least squares solution at any time t or,
equivalently, the combined use of Kalman Filter and Smoother. Yet since such solutions are not easily implemented
in recursive real-time computation, we will stop here the discussion just observing that the solution here proposed
is not really optimal but good enough for our purposes.

Example 2. A trolley is moving along a rectilinear rail with constant velocity v and random fluctuations νt. At
t = 0 the trolley is moving from the origin, X0 = 0, position known without error. Every second, t = 1, 2 . . . T + 1,
a distance meter takes the position of the trolley from the origin, with a white noise measurement ηt. We want to
set up a Kalman filter to get at every time t+ 1 the best estimate of the position, based on all measurements at
t′ = 1, 2 . . . t+ 1.

Initial condition:

X0 = 0 , σ2(X0) = 0 ;

16



Figure 2: The measurement arrangement of Example 2.

dynamic model:

Xt+1 = Xt + v + νt+1 , σ2
νt

= σ2
ν ;

observational model:

Y t+1 = Xt+1 + ηt+1 , σ2
ηt+1

= σ2
η .

With our notation we have

Dt+1 = 1 , Mt+1 = 1 .

Mean motion

µXt+1
= µXt

+ v → µXt′
= vt , t′ = 0, 1 . . . T + 1 ,

mean of the observations

µY t+1
= v(t+ 1) t = 0, . . . T .

Stochastic part of the motion

Xt = µXt
+Xt ; Xt+1 = Xt + νt+1

and of the observations

Y t+1 = µY t+1
+ Yt+1 ; Yt+1 = Xt+1 + ηt+1 .

Given

X0, σ
2(X0) = 0 , X̂t, σ

2(ε̂t) , ε̂t = Xt − X̂t ,

we have to find

X̂t+1, σ
2(ε̂t+1) ,
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where ε̂t+1 = Xt+1 − X̂t+1. We have

X̃t+1 = Xt+1|It = X̂t ,

ε̃t+1 = Xt+1 − X̃t+1 = Xt+1 − X̂t = Xt + νt+1 − X̂t = ε̂t + νt+1 ,

Ỹt+1 = X̃t+1 = X̂t ,

δYt+1 = Yt+1 − Ỹt+1 = Yt+1 − X̃t+1 = Yt+1 − X̂t =

= ε̃t+1 + ηt+1

σ2
ε̃t+1

= σ2
ε̂t
+ σ2

ν

σ2
δYt+1

= σ2
ε̃t+1

+ σ2
η = σ2

ε̂t
+ σ2

ν + σ2
η

σε̃t+1δYt+1
= σ2

ε̃t+1

X̂t+1 = X̃t+1 +
σε̃t+1δYt+1

σ2
δYt+1

· δYt+1 =

= X̂t +
σε̃t+1

σ2
ε̃t+1

+ σ2
η

(Yt+1 − X̂t)

σ2
ε̂t+1

= σ2
ε̃t+1

−
σ4
ε̃t+1

σ2
ε̃t+1

+ σ2
η

=
σ2
ε̃t+1

· σ2
η

σ2
ε̃t+1

+ σ2
η

.

It is interesting to remark that for t → +∞, σ2
ε̂t

has a limit σ2
ε̂∞

given by

σ2
ε̂∞

= 1/2(
√
σ4
ν + 4σ2

νσ
2
η − σ2

ν) .

On the contrary, without observations, we would have a variance of the stochastic part obeying

σ2
Xt+1

= σ2
Xt

+ σ2
ν ,

so having an unbounded trend

σ2
Xt

= tσ2
X0

.

3 Non-linear dynamic systems: the extended Kalman Filter

We generalize the model discussed in §2, by assuming that both dynamic equations and observation equations are
non-linear, namely

Xt+1 = gt+1(xt) +Qt+1νt+1 , (169)

Yt+1 = ht+1(Xt+1) + ηt+1 . (170)

We make the same hypotheses (76), (80), (81) on νt, ηt and (77), (78) on the initial state X0. We will also use
the definitions

NT
t′ = {νT1 . . . νTt′ } , ITt′ ≡ {Y T

1 . . . Y T
t′ } . (171)

Yet from now on we will set the hypothesis that {νt}, {ηt} are normally distributed, so that for such noises the
concept of orthogonality and stochastic independence do coincide; as an alterative we could always assume directly
that they are stochastically independent, so that relations like t′ > t,E{νt′ |Nt

} = 0 or ∀t, t′E{ηt′ |Nt} = 0 hold true.
In this section we first want to explore the differences between the non-linear and the linear model and then we

will study how to properly use the linearization technique and the results of §2, to provide an approximate solution
to our problem, which is always to find

X̂t+1 = E{Xt+1|It+1} (172)

and Cε̂t+1
, where ε̂t+1 is the prediction error

ε̂t+1 = Xt+1 − X̂t+1 , (173)
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knowing X̂t and Cε̂t .
We first notice that (169) seems to be different from (75), not only because in (75) Xt+1 depends linearly on

Xt, but also because in this equation we have a non-homogenous constant term, the deterministic input ut+1. As
we have seen, the sequence {ut′} essentially determines the evolution of the mean of {Xt′} (see (87)), which can be
separated from the zero mean stochastic part, as in (89), (90).

In the present context though, due to the non-linearity of (169), one cannot separate the evolution of the mean
and of the stochastic residual. So in general in (169), (170) {Xt′}, {Yt′} cannot be considered as zero mean variables.

On the other hand, by writing the dependency of Xt+1 from Xt as gt+1(Xt), namely a general non-linear function
changing with time, we have a model that can account for the presence of any input, on condition that this is a
known constant vector.

Example 3. To gain insight in the effects of the non-linearity in the dynamics of the system we just write the first
two steps.

We have

X0 = 0 C0 = 0

X1 = g1(0) +Q1ν1

X2 = g2(X1) +Q2ν2 ≡ g2[g1(0) +Q1ν1] +Q2ν2 .

As we see, in general

µ1 = E{X1} = g1(0) ̸= 0 .

In addition, X2 is not anymore a linear function of (νT1 , ν
T
2 ) ≡ NT

2 , so X2 /∈ L2(N2). Nevertheless, if g2(X1) has
finite second moments, what we assume to be true, we will have

X2 ∈ L2(N2)

and also

ν2⊥L2(N1)

so that

ν2⊥X1 .

Generalizing the above example one realizes that, if we put the hypotheses

gt+1(Xt) ∈ L2(Nt′) ∀t′ ≥ t (174)

we can describe the dynamics of the system by the following steps:

a) at time t the system undergoes a transformation sending Xt ∈ L2(Nt) to gt+1(Xt) ∈ L2(Nt)

b) at time t+ 1 the system accumulates the noise Qt+1νt+1 by moving in L2(Nt+1) orthogonally to L2(Nt).

This means for instance that

E{νt+1|Nt} = 0 . (175)

Once the state Xt+1 has been established at time t+ 1, an observation Yt+1 is done which is attained by moving
Xt+1 to h(Xt+1) ∈ L2(Nt+1) and adding a noise ηt+1.

The situation is illustrated in Fig. 2, where the motion along L2(Nt′) as opposed to the motion along L2(Nt′)
typical of linear systems is represented. Of course the space of the observations Yt′ is different from that of the
states so the last two steps of the path have to be understood only in a symbolic way.
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Figure 3: Symbolic representation of the formation of the observation Yt+1. a) above, in a linear model, b) below,
in a non-linear model, assuming that the dimension of Xt and Yt is just 1.
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Remark 12 (The linearization issue). As often when facing a non-linear problem, like producing the prediction
(172) and the associated covariance matrix Cε̂t+1

, a first approach is to linearize the equations, solve the linearized
problem and then iterate with the hope of converging to the wanted solution. In this case yet we have one further
problem. In fact, a first idea could be to try to linearize the predictor around the mean of {Xt+1} and to compute
such a mean iteratively by the approximate equation

µXt+1
∼= gt+1(µXt) ; (176)

in this equation the approximation is in that we have put

E{gt+1(Xt)} ∼= gt+1(µXt
) . (177)

This comes from a “linearization” of the dynamic equation (169), namely

Xt+1 = gt+1(µXt + δXt) +Qt+1νt+1
∼= (178)

∼= gt+1(µXt) +Gt+1(µXt)δXt +Qt+1νt+1 ,

where

Gt+1(µXt
) =

∂gt+1(X)

∂X

∣∣∣∣
X=µXt

(179)

and δXt = Xt−µXt
is the residual of Xt with zero mean. On taking the average of (178) one gets (177). The error

in (177), when second derivatives of gt+1(X) are bounded, is a quadratic term in δXt and so it is controlled by

E{δX2
t } = Tr(CXt

) . (180)

Yet from (178) we see that

Tr(CXt+1
) = Tr(Gt+1CXt

GT
t+1) + Tr(Qt+1Cνt+1

QT
t+1) ≡ (181)

≡ Tr(CXt
GT

t+1Gt+1) + Tr(Cνt+1
QT

t+1Qt+1) .

Now let us assume that {
GT

t+1Gt+1 ≥ cI
QT

t+1Qt+1 ≥ qI
(182)

meaning that neither the dynamics nor the influence of the noise ν tend to zero with epochs t tending to infinity;
then (182) gives

Tr(CXt+1) ≥ cTr(CXt) + qTr(Cνt+1) . (183)

Further, assuming that Cνt+1 is uniformly positive, i.e. the noise doesn’t tend to faint, (183) tells that the sequence
Tr(CXt

) might not be bounded and it is as a matter of fact unbounded if c > 1. Just think of the most elementary
example, namely δXt ∈ R a random walk, i.e. a process satisfying

δXt+1 = δXt + νt (E{ν2t } = σ2
ν) . (184)

In this case in fact

σ2(δXt+1) = σ2(δXt) + σ2
ν (185)

i.e.

σ2(δXt) = t · c2ν (186)

showing that δXt has a stochastic divergence in time. All that says that choosing µXt as linearization point is not
a good idea and could lead, as in the example above, to inconsistent conclusions. A better idea then could be to
choose for Xt our best estimate up to the time t, namely X̂t. This however poses a different problem because X̂t is
not fixed but a random variable. How to deal with this occupies the rest of this section and constitutes the heart
of the Extended Kalman Filter approach.

21



The Extended Kalman Filter

It is our purpose to find

X̂t+1 = E{Xt+1|It+1
} (187){

Cε̂t+1
= E{ε̂t+1ε̂

T
t+1}

ε̂t+1 = Xt+1 − X̂t+1 ,
(188)

by applying at the best a linearization approach to the model (169), (170) and knowing

X̂t = E{Xt|It} , Cε̂t . (189)

This program however is too ambitious for a general non-linear problem, because, due to the non-linear relations
(146), (169), even assuming the noises normally distributed, the variates Xt, Yt cannot be considered normally
distributed too. As consequence, the concepts of orthogonality and stochastic independence do not coincide, and
in particular the comfortable decomposition

E{Xt+1|It,δYt+1
} = E{Xt+1|It}+ E{Xt+1|δYt+1

} , (190)

splitting the Kalman filter into the characteristic prediction-update steps, doesn’t hold anymore.
So we have to restrict ourselves to the less optimal but still effective idea to use a linear regression to perform

the filter, i.e. we transform (186), (187), (188) into the search of

X̂t+1 = Xt+1|It+1 , (191)

Cε̂t+1
= E{ε̂t+1ε̂

T
t+1} , (192)

ε̂t+1 = Xt+1 − X̂t+1 , (193)

given

X̂t = Xt|It , Cε̂t . (194)

Notice that we are keeping the same symbol as in (186), (187), (188) although now X̂t, ε̂t have a different meaning.
In any way, we will continue to use the same notation as in the linear case and in particular we will put

X̃t+1 = Xt+1|It , ε̃t+1 = X̃t+1 −Xt , Ỹt+1 = Yt+1|It , δYt+1 = Yt+1 − Ỹt+1 . (195)

We underline that, since the operation U |It is a projection of U on L2(It), all orthogonality relations (e.g.
ε̂t+1⊥L2(It+1) , ε̃t+1⊥L2(It) etc.) continue to be valid.

Moreover, recalling the regression formula (57), we see that

µXt+1
= µX̂t+1

= µX̃t+1
, (196)

namely ε̂t+1, ε̃t+1 have zero average. The same holds indeed for the residuals ε̂t′ , ε̃t′ at every time.

Remark 13. It has to be well understood that despite the restriction of our predictors to L2(It), instead of L2(It),

the problem is still non-linear because (169), (170) continue to hold; only the relation between the predictor X̂t+1

and It+1 is now linear. So the development of the filter still has to be achieved by a suitable linearization.

To start the implementation of (191) we deal first with

Xt+1|It (197)

and apply a linearization approximation, namely

X̃t+1 = {g(Xt) +Qt+1νt+1}|It (198)

= {g(X̂t + ε̂t+1)|It =
∼= {g(X̂t) + Ĝt+1ε̂t}|It .
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In the last equation we have taken into account that νt+1|It = 0 and we have put

Ĝt+1 = Gt+1(X̂t) =
∂gt+1(X)

∂X

∣∣∣∣
X=X̂t

. (199)

In (198) the last step is just an approximation via linearization. Now it is important to realize that g(X̂t), Ĝt+1 are
known fixed quantities, according to (194), so that we can proceed from (194), getting

X̃t+1
∼= gt+1(X̂t) + Ĝt+1ε̂t|It ≡ gt+1(X̂t) , (200)

in fact by its very definition ε̂t = Xt − X̂t is orthogonal to L2(It).

Relation (200) tells us that X̃t+1 is a known vector on the basis of the data (194).
Now let us use the orthogonal decomposition (73), that we apply to the zero average variable ε̃t+1, namely

(Xt+1 − X̃t+1)|It+1
= ε̃t+1|It+1

= ε̃t+1|It + ε̃t+1|δYt+1
. (201)

On the other hand ε̃t+1|It = 0 by its very definition and also

X̃t+1|It+1
= X̃t+1 (202)

because L2(It) is a subspace of L2(It+1). So (201) can be rewritten as

X̂t+1 = X̃t+1 + ε̃t+1|δYt+1
. (203)

This development is exact because X̃t+1 ∈ L2(It), while δYt+1 is orthogonal to this space, as already observed.
On the other hand, by the regression formula (69) for zero mean random variables, we have

ε̃t+1|δYt+1
= Cε̃t+1δYt+1

C−1
δYt+1

δYt+1 . (204)

To proceed we need linearized formulas for Ỹt+1 and ε̃t+1.
We have

Ỹt+1 = Yt+1|It = {ht+1(X̃t+1 + ε̃t+1) + ηt+1}|It = (205)

∼= {ht+1(X̃t+1) + H̃t+1ε̃t+1}|It

because ηt+1 is orthogonal to L2(It) and we have put

H̃t+1 =
∂ht+1(X)

∂X

∣∣∣∣
X=X̃t+1

. (206)

Once more, ht+1(X̃t+1), H̃t+1 are fixed known quantities and ε̃t+1|It = 0 because ε̃t+1 is orthogonal to L2(It); we
have then

Ỹt+1
∼= ht+1(X̃t+1) (207)

and

δYt+1 = Yt+1 − Ỹt+1
∼= h(Xt+1)− h(X̃t+1) + ηt+1

∼= H̃t+1ε̃t+1 + ηt+1 . (208)

Moreover, always developing to the first order, we can write

ε̃t+1 = Xt+1 − X̃t+1 = (209)

∼= g(X̂t + ε̂t)− g(X̂t) +Qt+1νt+1

∼= Ĝt+1ε̂t +Qt+1νt+1 .
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Noting that both (208), (209) are orthogonal decompositions, we find in sequence

Cε̃t+1
= Kt+1 = Ĝt+1Cε̂tĜ

T
t+1 +Qt+1Cνt+1Q

T
t+1 , (210)

CδYt+1
= H̃t+1Kt+1H̃

T
t+1 + Cηt+1

, (211)

Cε̃t+1δYt+1
= Kt+1H̃

T
t+1 .

These relations used with (204), (200) in (191) give the Extended Kalman Filter predictor

X̂t+1 = gt+1(X̂t) +Kt+1H̃
T
t+1[H̃t+1Kt+1H̃

T
t+1 + Cηt+1

]−1δYt+1 (212)

where on right hand side we have only known quantities given as data of the problem As for the covariance of the
prediction error Cε̂t+1

, we proceed as in the linear case.
Let us write

ε̂t+1 = Xt+1 − X̂t+1 (213)

= Xt+1 − X̃t+1 −Kt+1H̃
T
t+1C

−1
δYt+1

=

= ε̃t+1 −Kt+1H̃
T
t+1C

−1
δYt+1

δYt+1 ;

we notice that δYt+1 ∈ L2(It+1) while ε̂t+1 is by definition orthogonal to this space (X̂t+1 is the orthogonal projection
of Xt+1 onto L2(It+1)), therefore solving for ε̃t+1 (213), we obtain

Cε̃t+1
= Cε̂t+1

+Kt+1H̃
T
t+1C

−1
δYt+1

H̃t+1Kt+1 . (214)

Recalling that Cε̃t+1
= Kt+1, (214) yields

Cε̂t+1
= Kt+1 −Kt+1H̃

T
t+1C

−1
δYt+1

H̃t+1Kt+1 (215)

where Kt+1 is given by (210) and CδYt+1
by (211); the posed problem is therefore solved.

Remark 14. As underlined in literature (see [9]) the Extended Kalman Filter propagates the evolution of the state
of the system by the non-linear dynamics gt+1(X) and the forward prediction equation

X̃t+1
∼= gt+1(X̂t) ; (216)

this at least takes into account the non-linear character of the motion. On the contrary the propagation of the
covariance of the prediction error is purely linearized. The effect is that of a considerable distortion of the covariance,
that is then influencing the following steps of the updating of the trajectory {Xt} so much as to lead in some cases
to an inconsistent estimate of it, diverging from the true path. It is for this reason that several methods have been
invented to overcome the simple linearization procedure. Among them one particularly simple to implement and
relatively light from the numerical point of view is the so-called Unscented Kalman Filter, that we present in the
rest of the tutorial.

Example 4. The system is a point P moving in the plane, subject to a dynamic model with a constant velocity v
in the direction of the x axis, plus some noise in both x and y directions. So the state of the system is described by
two components collected in a vector:

X̄t =

∣∣∣∣x̄t

ȳt

∣∣∣∣ , (217)

obeying the law:

X̄t+1 =

∣∣∣∣x̄t+1

ȳt+1

∣∣∣∣ = ∣∣∣∣x̄t

ȳt

∣∣∣∣+ ∣∣∣∣v0
∣∣∣∣+ ∣∣∣∣νt+1

ωt+1

∣∣∣∣ = X̄t + V̄t + nt+1 (218)

where
E{n} = 0, Cn = σ2

0I. (219)

In what follows we shall assume σ0 = 0.1 that means a noise of 10cm. Moreover we will take also v = 1, considered
as 1m/s corresponding to a walking velocity of 3.6km/h. The motion starts at a point of the negative x axis
(−L, 0) without error. In this example we will take L = 120m, so that after two minutes walk the point is in the
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Figure 4: The 2D navigation of Example 4.

surroundings of the origin (see Fig. 4).
Since the dynamic of the system is linear, it is convenient to split the evolution into the deterministic part

E{X̄t} = µX̄t
= X̄0 + V̄ t =

∣∣∣∣−L+ vt
0

∣∣∣∣ , (220)

satisfying the equation
µX̄t+1

= µX̄t
+ V̄ , (221)

and the zero mean stochastic part

Xt = X̄t − µX̄t
=

∣∣∣∣xt

yt

∣∣∣∣ , (222)

satisfying the equation
Xt+1 = Xt + nt+1. (223)

Now we add a flow of observations namely distances at 1Hz rate from P and a Base Station BS placed on the y
axis at coordinates (0, d) (see Figure 4).
The observation equations have therefore the form

Wt+1 = h(X̄t+1) + ηt+1, (224)

with ηt a white noise in time,
E{ηt} = 0, σ2(ηt) = σ2

0 , (225)

and independent of nt.
In this case

h(X̄t+1) =
√

x̄2
t+1 + (d− ȳt+1)2 =

√
(−L+ v(t+ 1) + xt+1)2 + (d− yt+1)2 = Dt+1. (226)

Our purpose is to retrieve the trajectory of P up to the time t = 120s, by applying the Extended Kalman Filter.
Following the reasoning of this section we find, from the dynamic equation,

Qt+1 = I,Gt+1 = I (227)

from (200)
X̃t+1 = X̂t (228)

from (206)
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Ht+1 =
1

h(X̂t)

[
−L+ v(t+ 1) + x̂t ŷt − d

]
(229)

from (207)

W̃t+1 = h(X̂t) =
√
(−L+ v(t+ 1) + x̂t)2 + (ŷt − d)2 (230)

and
δWt+1 = Wt+1 − W̃t+1, (231)

from (210) and (211)
Kt+1 = Cϵ̂t + σ2

0 , (232)

CδWt+1
= σ2(δWt+1) = Ht+1Kt+1H

T
t+1 + σ2

0 (233)

and finally from (212)

X̂t+1 =

∣∣∣∣x̂t+1

ŷt+1

∣∣∣∣+ (CϵtĤ
T
t+1) ·

δWt+1

Ht+1Cϵ̂tH
T
t+1 + σ2

0

. (234)

Moreover from (214) we get the covariance propagation

Cϵ̂t+1 = Kt+1 −
1

σ2(δWt+1)
(Kt+1H

T
t+1)(Ht+1Kt+1). (235)

4 The Unscented Transformations: the one-dimensional case

The method has been invented (see [9]) to produce the propagation of mean and covariance through a non-linear
transformation

Y = g(X) , X ∈ Rn , Y ∈ Rm (236)

with an improvement with respect to the simple linear approximation, i.e.

µY
∼= g(µX) (237){
CY

∼= GCXGT

G = ∂g
∂X

∣∣∣
X=µX

,
(238)

but without resorting to the use of second and higher order derivatives of g(X), that becomes numerically heavy
specially for real time applications that we have in mind.

We restrict ourselves to the hypothesis that X is a normal variate, with mean µX and covariance CX , sending
to Remark 13 a comment on the significance of such hypothesis.

Following the authors of [9], the “intuition” of the approach is in that “with a fixed number of parame-
ters it should be easier to approximate a Gaussian distribution, than it is to approximate a non-linear func-
tion/transofrmation”.

The trick devised is then, to use just a discrete distribution to approximate the normal distribution of X and
then to apply the non-linear transformation to the discrete variable X ′ to obtain a discrete Y ′ that approximates
Y .

We start by analyzing the problem of a one-dimensional variable with a transformation g : R1 → R1, because
in this case formulas are particularly transparent.

Assume X to be normal with mean µX and variance σ2
X . Then with a discrete distribution on two argumental

values only we can generate a variable X ′ with the same mean and variance. In fact, let us put

X ′ =

{
X ′

1 = µX + dσX p1 = p
X ′

2 = µX − dσX p2 = 1− p
(239)

If we impose {
µX′ = µX + pdσX − (1− p)dσX ≡ µX

σ2
X′ = pd2σ2

X + (1− p)d2σ2
X ≡ σ2

X
(240)
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we find

p = 1/2 , d = 1 . (241)

So

X ′
I ≡

{
µX + σX p = 1/2
µX − σX 1− p = 1/2

(242)

has the same mean and variance as X. Now, since X ′
I is symmetric it is obvious that its third central moment, as

all odd central moments, is zero

µ3(X
′
2) = E{(X ′ − µX′

I
)3} = 0 ; (243)

this says in statistical terms that X ′
I is not skewed, similarly to what happens to the normal variate X. As for the

fourth central moment though, one has

µ4(X
′
I) = E{(X ′ − µX′

I
)4} = σ4

X′
I
≡ σ4

X . (244)

This is in contrast with the case of a normal distribution which we know to have a kurtosis equal to 3, namely

µ4(X) = 3σ4
X . (245)

If we wanted X and X ′ to have equal moments up to the fourth, still keeping a symmetric discrete distribution,
we could put

X ′
II ≡

 µX − dσX p
µX q (q + 2p = 1)
µX + dσX p ,

(246)

Due to its symmetry we obviously have at once

µX′
II

= µX , µ3(X
′
II) = µ3(X) = 0 .

On the other hand, imposing equality of variance and fourth central moments we get{
σ2
X′

II
= 2d2σ2

Xp ≡ σ2
X

µ4(X
′
II) = 2d4σ4

Xp = 3σ4
X

(247)

that imply

d =
√
3 , p = 1/6 , q = 2/3 . (248)

The points X ′
Ii ≡ (µX − σX , µX + σX) in the first solution or X ′

IIi ≡ (µX −
√
3σX , µX , µX +

√
3σX) in the second

are denominated σ-points of the Gaussian distribution of X.
Let us see now what are the consequences of one or the other solution when we apply it to a non-linear

transformation R1 → R1, namely

Y = g(X) . (249)

The idea is that if we can approximate the normal variate X, then we can use

Y ′ = g(X ′) (250)

as an approximation of Y .
In particular we would like to know how good is the approximation

µY
∼= µY ′ (251)

and

σ2
Y
∼= σ2

Y ′ , (252)
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comparing the first with the second choice of X ′, as described above.
We make the hypothesis that g is regular up to the sixth order derivatives, so that we can exploit Taylor’s

formula up to this order. After posing X = µX + δX, we compute

Y = g(µX + δX) = g(µX) + g′δX +
1

2
g′′δX2 +

1

6
g′′′δX3 +

1

24
givδX4 +O5 , (253)

where all derivatives are evaluated at µX .
Recalling that

E{δX} = E{δX3} = E{δX5} = 0 ; E{δX2} = σ2
X , E{δX4} = 3σ4

X , (254)

we find

µY = g(µX) +
1

2
g′′σ2

X +
1

8
givσ4

X +O6 . (255)

This yields

Y − µY = g′δX +
1

2
g′′(δX2 − σ2

X) +
1

6
g′′′δX3 +O4 (256)

and then

(Y − µY )
2 = g′2δX2 +

1

4
g′′2(δX2 − σ2

X)2 + g′g′′δX(δX2 − σ2
X) + (257)

+
1

3
g′g′′′δX4 +O5 .

Averaging and recalling (245) we have finally

σ2
Y = g′2σ2

X +
1

4
g′′2 · 2σ4

X + g′g′′′σ4
X −O6 (258)

= g′2σ2
X + (

1

2
g′′2 + g′g′′′)σ4

X +O6 .

Now we repeat the above computation for the two choices

X ′
I ≡

{
µX + σX p = 1/2
µX − σX p = 1/2

; X ′
II =

 µX +
√
3σX p = 1/6

µX p = 2/3

µX −
√
3σX p = 1/6

(259)

giving rise to the corresponding

Y ′
I = g(X ′

I) ; Y ′
II = g(X ′

II) , (260)

namely

Y ′
I =

{
g(µX + σX) p = 1/2
g(µX − σX) p = 1/2

(261)

and

Y ′
II =

 g(µX +
√
3σX) p = 1/6

g(µX) p = 2/3

g(µX −
√
3σX) p = 1/6

(262)

Developing both Y ′
I , Y

′
II in powers of σX up to order 4 and recalling that{

µX′
I
= µX ;σ2

X′
I
= σ2

X ; µ4(X
′
I) = σ4

X

µX′
II

= µX ; σ2
X′

II
= σ2

X ; µ4(X
′
II) = 3σ4

X
(263)
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we get {
µY ′

I
= g(µX) + 1

2g
′′σ2

X + 1
24g

ivσ4
X +O6

µY ′
II

= g(µX) + 1
2g

′′σ2
X + 1

8g
ivσ4

X +O6
(264)

and {
σ2
Y ′
I
= g′2σ2

X + 1
6g

′g′′′σ2
X +O6

σ2
Y ′
II

= g′2σ2
X + ( 12g

′′ + g′g′′′)σ4
X +O6 .

(265)

The conclusion is that

µY − µY ′
I
=

1

12
givσ4

X +O6 = O4 , (266)

σ2
Y − σ2

Y ′
I
=

(
1

2
g′′2 +

5

6
g′g′′′

)
σ4
X +O6 = O4 (267)

and

µY − µY ′
II

= O6 (268)

σ2
Y − σ2

Y ′
II

= O6 , (269)

showing the improvement of the second choice with respect to the first.
Before concluding the example we would like to stress that µY ′

I
, µY ′

II
, σ2

Y ′
I
, σ2

Y ′
II

are calculated by the ordinary

statistical formulas

µY ′ =
∑
i

Y ′
i pi , (270)

σ2
Y ′ =

∑
i

(Y ′
i − µY ′)2pi (271)

where argumental values Y ′
i and probabilities pi are given in (261), (262), depending on the choice taken.

Remark 15. One could argue that the hypothesis of normality of X is too restrictive. In reality, however, the
procedure of the unscented transform aims at approximating the mean and variance (in the 1D case) of Y and thus,
once X has a distribution around µX bulky and not too skewed, the approximation in practice works sufficiently
well, even if X is not Gaussian. What is important is that in the interval of high probability of X the function
g be smooth enough to be well approximated by a Taylor development up to the fourth order. This should be
more than sufficient to get an improvement on the simple linear approximation. Different is the problem of the
required smoothness of g to guarantee that the error estimates (266), (267), (268), (269) are realistic. It has been
asserted (see [9]) that in principle the Unscented Transform works even with a discontinuous function for which no
linearization can be applied.

This of course is true, however a warning on such a mater is certainly justified, as shown in next Example 5.

Example 5. In this example we examine the difference between the two choices of σ-points, X ′
I and X ′

II , with a
very simple function

Y = g(X) = (a+X)2 = a2 + 2aX +X2 .

We take for the X distribution, a standard Gaussian, so that µX = 0, σX = 1 and the σ-points of X ′
I and X ′

II are
respectively {1,−1}, {

√
3, 0,−

√
3}.

We have then

Y ′
I =

{
(a+ 1)2 p = 1/2
(a− 1)2 p = 1/2

Y ′
II =

 (a+
√
3)2 p = 1/6

a2 p = 2/3

(a−
√
3)2 p = 1/6

Computing means and covariances we get

µY ′
I
= a2 + 1 , σ2

Y ′
I
= 4a2

µY ′
II

= a2 + 1 , σ2
Y ′
II

= 4a2 + 2 .
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Since by a direct calculus, applying the known information µX = 0,
σ2
X = 1, µ3(X) = 0, µ4(X) = 3, we have

µY = a2 + 1 , σ2
Y = 4a2 + 2 ,

we see that Y ′
I can reproduce the mean but not the variance of Y , while Y ′

II reproduces both. This result was
indeed to be expected, since Y ′

II can produce an approximation up to the fourth order, which is exactly what is
necessary to compute σ2

Y .

Example 6. In this example we want to illustrate the effects of a certain irregularity in g(X). So we take

g(X) =

{
X X ≥ 0
0 X < 0

;

as distribution of X we choose again a standardized normal, so that µX = 0, σ2
X = 1. Therefore the σ-points of X

are again

X ′
I =

{
1 p = 1/2
−1 p = 1/2

, X ′
II =


√
3 p = 1/6

0 p = 2/3

−
√
3 p = 1/6

,

and the corresponding Y ′ variables are

Y ′
I =

{
1 p = 1/2
0 p = 1/2

Y ′
II =

{ √
3 p = 1/6

0 p = 5/6
,

Then we have

µY ′
I
= 0,50 , σ2

Y ′
I
= 0,25

µY ′
II

= 0,29 , σ2
Y ′
II

= 0,42 .

These figures have to be compared with

µY =
1√
2π

∫ +∞

0

ye−
y2

2 dy =
1√
2π

∼= 0,40

and

σ2
Y =

1√
2π

∫ +∞

0

y2e−
y2

2 dy − 0,16 = 0,34 .

As we can see the differences are not huge, yet clearly not negligible. Moreover, in this case the second choice
doesn’t display an improvement on the first.

5 The Unscented Transform: general case

In this section we aim at repeating the reasoning of the preceding section for the general case

Y = g(X) ; X ∈ Rn , Y ∈ Rm . (272)

As before, we assume X to be normally distributed with mean µX and covariance CX . In order to find the σ-point
of X, to build subsequently some discrete X ′, we need first to notice that the ndimensional standardization of X
is done by the formulas

X = µX + TZ , Z = T−1(X − µX) (273)

where T is any square root of CX , namely

TTT = CX . (274)
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Indeed many matrices T can be used to implement (274); among them we recall the symmetric square root of CX ,

usually denoted C
1/2
X , and the factor T of the Cholesky decomposition, which is easy to compute.

One important remark is that the Z variable defined by (273) is first of all normal itself and furthermore

µZ = 0 , CZ = I(n) . (275)

We note too that, given the particular form of the normal density (see (38)), the components of Z,Zi(1 = 1 . . . n),
are stochastically independent, so that the mean of products of functions of different components is just the product
of the means of these functions. In particular, for the moments of third and fourth order of Z we have

µ3(Z) = E{ZiZjZk} = 0 ∀i, j, k (276)

and

µ4(Z) = E{ZiZjZkZℓ} =


3 i = j = k = ℓ

(i = j, k = ℓ)(i ̸= k)
1 (i = k, j = ℓ)(i ̸= j)

(i = ℓ, j = k)(i ̸= j)
0 all the other cases.

(277)

We summarize the long description (277) into a unique formula, namely

µ4(Z) = E{ZiZjZkZℓ} = δijδkℓ + δikδjℓ + δiℓδjk . (278)

It is worth mentioning that for Z, as for all variates with zero mean, simple moments are the same as central
moments. Endowed with (278) we can easily compute the moments of δX = X − µX , i.e. the central moment of
X. In fact, first for all components i, j, k

µ3(X) = E{δXiδXjδXk} = 0 ; (279)

the same is true in general for any odd moment of δX = X − µX because this is an odd function of δX while the
Gaussian probability density is an even function of δX and the integral of the product is zero.

Moreover, with the help of (273), we have

µ4(X) = E{δXiδXjδXkδXℓ} = (280)

=

n∑
q,r,s,t=1

TiqTjrTksTℓt(δqrδst + δqsδrt + δqtδrs) . (281)

Let us make the computation of the first term:

n∑
q,r,s,t=1

TiqTjrTksTℓtδqrδst =
∑
q

TiqTjq ·
∑
s

TksTℓs =

= CX,ijCX,kℓ , (282)

where (274) has been used.
By cycling the indexes we arrive then at the formula

µ4,ijkℓ(X) = E{δXi, δXjδXkδXℓ} = (283)

= CX,ijCX,kℓ + CX,ikCX,jℓ + CX,iℓCX,jk .

Now we build the unscented variable X ′ by exploiting an analogy to the one-dimensional case, i.e. using two
different choices of the σ-points in an effort to produce the identity of mean, covariance and central fourth moment
tensor of X and X ′.

Subsequently, we will analyze the effect of the two choices in the approximate transformation ofX ′ to Y ′ = g(X ′),
compared with g(X). The idea is to produce first σ-points of Z and then to transform them into σ-points of X.
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First choice

The analogous to the choice (239) for an n-dimensional Z is

arg(Z ′
I) =

{
Z ′
i = dui

Z ′
−i = −dui

1 = 1, 2 . . . n , (284)

with ui any orthogonal basis of Rn. In this way we have 2nσ-points symmetrically distributed.
Of course the basis {ui} is arbitrary, yet the easiest choice is to use the standard basis {ei}, with unit vectors

having components

{ei}j = ei,j = δij , (285)

namely 1 as i-th component and 0 all the others. Now we construct on such σ-points the distribution of a random
variable Z ′ by assuming that it is uniform in all directions, so imitating the behaviour of a standard normal
distribution. In this way we fix the probability attributed to each σ-point as

pi =
1

2n
. (286)

It is clear that, with such a symmetric distribution, we have

µZ′
I
= 0 , µ3(Z

′
I) = 0 ; (287)

of course all higher odd moments are zero too. Now we fix d in such a way that the covariance of Z ′ is I(n), exactly
as for Z. We have

n∑
i=−n
i̸=0

Z ′
iZ

′T
i pi =

1

2n
d2 · 2

n∑
i=1

eie
T
i =

d2

n
I(n) ; (288)

here we have used the fact that Z ′
−iZ

′T
−i = Z ′

iZ
′T
i .

Therefore, if we put

d =
√
n (289)

we have

CZ′
I
= I(n) . (290)

So we arrive at a discrete, symmetric variable having the required properties

Z ′
I =

{
Z ′
i =

√
nei

Z ′
−i = −

√
nei

pi =
1

2n
, (291)

µZ′
I
= 0 , CZ′

I
= I(n) . (292)

We have already observed that µ3(Z
′
I) = 0, as it is for Z, so we ask ourselves what is the situation with µ4(Z

′
I). In

analogy with the 1D case we have µ4(Z
′
I) ̸= µ4(Z). In fact, recalling (285), we find

µ4(Z
′
I)qrst = E{(Z ′)q(Z

′)r(Z
′)s(Z

′)t} = (293)

=
1

2n

n∑
i=−n
i̸=0

Z ′
i,qZ

′
i,rZ

′
i,sZ

′
i,t = n

n∑
i=1

ei,qei.rei.sei.t =

= n

n∑
i=1

δiqδirδisδit = nδqrδqsδqt .

This is different from µ4(Z); in fact, it is enough to take q = r ̸= s = t in (278) and (293), to realize that

q ̸= s , µ4(Z)qqss = 1 ̸= µ4(Z
′
I)qqss = 0 . (294)
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Indeed from the variable Z ′
I one can construct the corresponding variable X ′ from

X ′
I = µX + TZ ′

I , (295)

namely a variable with a uniform distribution on

arg(X ′
I) =

{
µX +

√
nTei = µX +

√
nTi

µX −
√
nTei = µX −

√
nTi

i = 1, . . . , n (296)

where Ti is the i-th column of the matrix T . Hence each σ-point X ′
Ii = µX ±

√
nTi bears a probability pi =

1
2n ,

and we find {
E{X ′

I} = µX

CX′
I
= TTT = CX ,

(297)

as required to X ′
I . In addition, by symmetry

µ3(X
′
I) = 0 . (298)

On the contrary, for the fourth central moment of X ′
I we have in general

µ4(X
′
I)qrst ̸= µ4(X)qrst (299)

More precisely the inequality (299) becomes, in terms of the elements of T ,

n

n∑
i=1

TqiTriTsiTti ̸= (

n∑
i=1

TqiTri)(

n∑
i=1

TsiTti) + (300)

(

n∑
i=1

TqiTsi)(

n∑
i=1

TriTti) + (

n∑
i=1

TqiTti)(

n∑
i=1

TriTsi) .

That the inequality (300) is true in general can be verified by the elementary examples where T is diagonal, or
its entries are only 1 or 0.

We pass now to study the performance of the choice X ′
I , when we use it to produce the approximation

Y ′
I = g(X ′

I) =

{
g(X ′

i)
g(X ′

−i)
i = 1, . . . n , pi =

1

2n
(301)

to the variable Y . It is easy to predict that the error in µY ′
I
and CY ′

I
is O4, yet we see this in detail.

Since we need only a Taylor development of g(X) up to order 4, we prefer to use a simple index notation instead
of one more synthetic. So we write

Y = g(X) = g(µX + δX) = g(µX) +
∑
i

δXigi + (302)

+
1

2

∑
ij

δXiδXjgij +
1

6

∑
ijk

δXiδXjδXkgijk +

+
1

24

∑
ijkℓ

δXiδXjδXkδXℓgijkℓ +O5 ;

here we have put

gi =
∂g(µX)

∂Xi
, gij =

σ2g(µX)

∂Xi∂Xj
, gijk =

∂3g(µX)

∂Xi∂Xj∂Xk
, gijkℓ =

∂4g(µX)

∂Xi∂Xj∂Xk∂Xℓ
. (303)

Recalling that the mean of odd orders is zero, we get

µY = g(µX) +
1

2

∑
ij

CXijgij +
1

24

∑
ijkℓ

µ4(X)ijkℓgijkℓ +O6 . (304)
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Therefore

Y − µY =
∑
i

δXigi +
1

2

∑
ij

(δXiXj − CXij)gij + (305)

+
1

6

∑
jk

δXiδXjδXkgijk +O4 ,

where we have stopped the Taylor formula at order 3 because we are going to use it in a quadratic form where
terms O4 multiplied by O1 become at least O5.

Then, returning to the maximum order 4, we can write

(Y − µY )(Y − µY )
T =

∑
i,j

δXiδXjgig
T
j + (306)

+
1

4

∑
ijkℓ

(δXiδXj − CXij)(δXkδXℓ − CXkℓ)gijg
T
kℓ +

+
1

6

∑
ijkℓ

δXiδXjδXkδXℓ(gig
T
ikℓ + gjkℓg

T
i ) +

+ odd terms +O6 .

So, averaging we arrive at

CY = E{(Y − µY )(Y − µY )
T } =

∑
ij

CXijgig
T
j + (307)

+
1

4

∑
ijkℓ

µY ijkℓ(X)CXijCXkℓ −
1

4
(
∑

CXijgij)(
∑

CXkℓgkℓ)
T +

1

6

∑
ijkℓ

µY ijkℓ(X)(gig
T
jkℓ + gjkℓg

T
i ) +O6 .

Of course, the same formulas (304) and (307) hold for both our original X and its discrete approximation X ′
I .

Therefore on account of the identities µX = µX′
I
, CX = CX′

I
and of the inequality (299), between fourth order

moments, we have obviously

µY − µY ′
I
= O4 , (308)

CY − CY ′
I
= O4 . (309)

There is no need to say that for the discrete approximation Y ′
I , given by (301), mean and covariance matrix

have to be computed by the ordinary formulas

µY ′
I
=

1

2n

n∑
i=−n
i̸=0

g(Xi) , (310)

CY ′
I
=

1

2n

n∑
i=−n
i̸=0

[g(Xi)− µY ′
I
][g(Xi)− µY ′

I
]T . (311)

How to improve the above estimates, taking into account the fourth order moments, will take us busy for the
rest of the chapter. Before however, we have to discuss shortly a direction taken by the literature [8] which to our
advise is not so elegant and well-settled as it is for the 1D case.

Remark 16. Since in the one-dimensional case the addition of the origin as argumental value of X ′ allows to impose
the equality of the fourth order moment of X and X ′, the inventors of the Unscented Transform have thought to
follow the same path in the multi-dimensional case. So they propose ([8], [9]) an X ′ with argumental values

1 = 1 . . . n X ′ =

 Xi = µX + dTi pi = p
X0 = µX p0 = 1− 2np
T−i = −Ti p−i = p

(312)
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where the parameters to be adjusted are d and p.
Instead of p as an unknown parameter, S. Julier and J.K. Uhlmann prefer to use a parameter K related to p by

the formula

p =
1

2(n+K)
; (313)

it is clear that since it has to be 2np < 1, K so defined has to be positive. From (313) descends that

p0 =
K

n+K
. (314)

It is clear by symmetry that µX = µX′ , so we have to impose only

CX′ =
d2

2(n+K)

n∑
i=−n
i̸=0

TiT
T
i = (315)

=
d2

n+K

n∑
i=1

TiT
T
i = CX .

Since
∑n

i=1 TiT
T
i = CX , we find

d =
√
n+K (316)

and K still remains undetermined. So in principle it could be used to reduce the errors in the fourth order moments
of X ′, to make them closer to the fourth order moments of X ′. On the other hand, if we construct the transformed
σ points

Y ′
i = g(Xi) , pi =

1

2(n+K)
, i = ±1 . . .± n , p0 =

K
n+K

(317)

we see that discrete mean and covariance become

µY ′ =
1

n+K
{Kg(µX) +

1

2

n∑
i=−n
i̸=0

g(X ′
i)} , (318)

CY ′ =
1

n+K
{K[g(µX)− µY ′ ][g(µX)− µY ′ ]T + (319)

+
1

2

n∑
i=−n
i̸=0

[g(X ′
i)− µY ′ ][g(X ′

i)− µY ′ ]T } .

If by any chance the optimal K is negative, what can happen, we see that (314) still retains its meaning, while
CY ′ might not be positive definite.

This leads us out of the theoretical frame of the present development and we think this is due to the particular
choice of X ′, or of the underlying Z ′

Z ′ =

{
µX ±

√
n+Kei i = 1 . . . n pi =

1
2(n+K)

µX i = o p0
K

n+K
, (320)

which has a substantial difference from Z. In fact, while the components of Z are stochastically independent, the
components of Z ′, in (320), are not.

This is the reason why fourth order moments of X and X ′ cannot be the same, at least in general.
Some remedies are proposed in literature [8] trying to make the use of X ′, from (312), consistent. Yet we prefer

another approach, that is in our opinion a more natural generalization of the 1D choices and works as easily at least
for small values of n.
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Figure 5: The grid (322) in 2D and the distribution of the sigma points:⊙ p = 1
36 , • p = 1

9 , + p = 4
9 .

Second choice: the Normo-Kurtic Unscented Transform

We stipulate in this case that the σ-points of Z are given as follows: let’s introduce a multi-index

α = (α1, α2 . . . αn) ; αk = −1, 0, 1 , (321)

thus we put

argZ ′
II ≡ {Z ′

α =
√
3α , ∀α} . (322)

It is clear that the grid (322) is just the Cartesian product of the grid (−
√
3, 0,

√
3), used in the 1D case, by itself

along each coordinate axis of Rn. On such a grid it is possible to distribute probabilities so that the components of
Z ′ become independent. It is in fact enough to put

P (Zα =
√
3α) = pα = pα1pα2 . . . pαn (323)

where

pαk
=

 1/6 αk = 1
2/3 αk = 0
1/6 αk = −1 .

(324)

The situation is illustrated in Fig. 5 for a 2D case.

It is obvious that by construction the marginal distributions of Z ′
II , i.e. the distributions of each component Z ′

i

of Z ′
II , are all equal one to the other and correspond to

Z ′
i =

 1 p = 1/6
0 p = 2/3
−1 p = 1/6

. (325)
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Accordingly we have

∀i , E{Z ′
i} = 0 , E{Z ′2

i } = 1 , E{Z ′4
i } = 3 . (326)

Moreover, always by construction, any two different components of Z ′ are independent, so

i ̸= j E{Z ′
iZ

′
j} = E{Z ′

i}E{Z ′
j} = 0 . (327)

Clearly all third order moments are zero, as it is evident also for symmetry reasons. As for fourth order moments,
also thanks to the stochastic independence, we have

i ̸= j ̸= k ̸= ℓ E{Z ′
iZ

′
jZ

′
kZ

′
ℓ} = 0 ; (328)

similarly in case that two components are equal but the others are different, one has

i ̸= k ̸= ℓ E{Z ′2
i Z ′

kZ
′
ℓ} = 0 . (329)

On the contrary, when we have the components equal in couples, we get

E{Z ′2
j Z ′2

k } = E{Z ′2
j } · E{Z ′2

k } = 1 . (330)

Likewise if we have a cube of one coordinate and a first order of another coordinate, we get

E{Z3
i Zk} = 0 (331)

Finally fourth powers of a single coordinate are already given in (326).
Putting together all relations from (326) to (331) we see that

µZ′
II

= 0 , M3(Z
′
II) = 0

M2(Z
′
II) = {δik} = I(n)

M4(Z
′
II)ijkℓ = δijδdℓ + δikδjℓ + δiℓδjk ,

(332)

exactly as we have for the first 4 moments of the standard normal Z. Based on these results, we can at once
maintain that

X ′
II = µX + TZ ′

II , X = µX + TZ , (333)

do have common moments up to the fourth. Even more, if we put

Y ′
II = g(X ′

II) , (334)

by going back to (304), (307), exploiting the equality of the 4 moments we have established the following proposition.

Proposition 8. With the choice (334), (333), under the hypothesis that X is normal and g a vector differentiable
up to the sixth order, we have

µY − µY ′
II

= O6 , (335)

CY − CYII
= O6 . (336)

This is exactly the result we were looking for. Indeed the method is not devoid of critical points which we
examine now.

Remark 17. One could object that Proposition 8 holds only under the hypothesis that X is a normal variate. Yet
the argument has been already discussed in Remark 13, and here the same arguments hold. It is clear that for a
non-Gaussian random variable X, (335), (336) can hold only approximately. In case of a symmetric variable X, we
still have O4 errors for mean and covariance and this can be achieved already with the simpler choice of X ′

I . On the
other hand, when X is seriously skewed, i.e. it has non-zero third moments, then only an O3 error estimate can be
deemed. In any event the purpose of improving on the simple linearized formulas, is achieved, with the advantage
of avoiding computations of the derivatives of g up to the second order.
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Remark 18. More serious is the objection that with the choice X ′
II we have to determine 3n σ-points, while for

the choice X ′
I this figure is only 2n or 2n + 1 if we add the origin). Yet, as anticipated, when the number of

degrees of freedom of X is small, for instance n = 3 as the position of a point in space, the difference is certainly
manageable from the computational point of view. On the other hand, when n is as large as 10 or so, the number of
σ-points increases to a level that makes a simple Montecarlo Method competitive with the choice for the Unscented
Transform.

A remedy to this drawback can come from a circumstance not infrequently met. Namely, assume that the
random variable X can be split into two groups of variables

X =

∣∣∣∣ ξ
η

∣∣∣∣ , (337)

such that in the range of variability of η the non-linear function

g(X) = g(ξ, η) , (338)

can be linearized in η, with a second order error that we consider negligible. Then instead of (338) we can write

g(X) = g(µξ + δξ, µη + δξ) ∼= (339)

= g(µξ + δξ, µη) + gη(µξ + δξ, µη)δη ;

if we further assume that gη is slowly varying with δξ and considering that gη is already multiplied buy the small
residual δη, we can write a simplified model of (338) as

g(X) ∼= g(µξ + δξ, µη) + gη(µξ, µη)δη . (340)

Such a model mixes a non-linear dependence on ξ, which we assume to be necessary to keep, given the particular
combination of the size of δξ and of the sensitivity of g with respect to this variable, and a linear dependence on η.
So in synthesis we assume to have a model with the following form:

Y = f(ξ) +Hη (341)

and we want to propagate mean and covariance by knowing µξ, µη and

CX =

∣∣∣∣ Cξ Cξη

Cηξ Cη

∣∣∣∣ . (342)

As before it is convenient to reduce the problem to random variables that decouple (ξ, η), namely we define the
block-Cholesky decomposition of CX as

CX = TTT , T =

∣∣∣∣ Tξ 0
Tηξ Tη

∣∣∣∣ , (343)

and we define two independent standard normal variates (ω, ζ) by

X =

∣∣∣∣ ξ
η

∣∣∣∣ = T

∣∣∣∣ ω
ζ

∣∣∣∣ =

∣∣∣∣ Tξω
Tηξω + Tηζ

∣∣∣∣ . (344)

Substituting in (341) we get

Y = F (ω) +Kζ , (345)

(F (ω) = f(µξ + Tξω) +HTηξω , K = HTη) .

Now, since ω is stochastically independent of ζ, from (345) we can write{
µY = µF +Kµζ

CY = CF +KCζK
T ; (346)

in this way the problem has reduced to the estimate of µF , CF for the non-linear function

U = F (ω) . (347)

If the dimension of ω is small, we can then apply the Normo-Kurtic Unscented Transform to this part of the
problem, so finding the solution of (346) with what we could call a Partial Unscented Transform.
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6 The Unscented Kalman Filter

We can return now to the non-linear problem, expressed in Chapter 3 by equations (187), (188), (189) and set up
a solution, based on the idea of the Unscented Transform, outperforming the linearized approach of the Extended
Kalman Filter.

Let us recall that the case of the Unscented Transform concept is to substitute any R.V. X with a discrete R.V.
X ′ having argumental values (X ′)i with probabilities pi such that X ′ and X have the same means and covariances,
whatever is the chosen transform. When X is a normal variate, with a suitable choice of the Unscented Transform,
the errors in the mean and covariance are O6, but even in the worst case they are O3, which is better than the O2

errors of a linearized theory.
Here we will always assume normality of our random variables, that has a main consequence that two orthogonal

zero mean variables X − µX , Y − µY , i.e.

CXY = E{(X − µX)(Y − µY )
T } = 0 , (348)

are also stochastically independent, so that, recalling (27),

E{F (X)|Y } ≡ E{F (X)} (349)

for almost all Y , with probability 1, and whatever F (X) ∈ L2(X).
Furthermore, one has that the optimal approximation of X given Y is also the regressor of X on Y , namely (see

Proposition 4 in Chapter 1)

X̂ = E{X|Y } = X|Y = µX + CXY C
−1
Y (Y − µY ) (350)

with error variance (covariance)

ε̂ = X̂ −X , Cε̂ = CXY C
−1
Y CY X . (351)

Alternatively we could say that we continue with the choice made in Chapter 2 to restrict ourselves to the search
of regression predictors of our variables, what leads us directly to (350), (351).

With the above proviso, let us return to the problem of predicting X̂t+1, that, recalling (203), we write as

X̂t+1 = X̃t+1 + E{Xt+1 − X̃t+1|δYt+1} . (352)

As in the previous chapter

δYt+1 = Yt+1 − Ỹt+1 (353)

and

Ỹt+1 = Yt+1|It = E{Yt+1|It} , (354)

that we will elaborate here below.
Furthermore

X̃t+1 = Xt+1|It = E{Xt+1|It} = (355)

= E{gt+1(X̂t + ε̂t) +Qt+1νt+1|It}

On the other hand νt+1|It = E{νt+1|It} = 0, while by conditioning gt+1(X̂t + ε̂t) to It we fix X̂t (which is in
L2(It)) and let only ε̂t to vary. But ε̂t is orthogonal to L2(It) and so independent of It, so that the conditioning on
It does not act on ε̂t and the conditional mean in (355) becomes an unconditional mean

X̃t+1 = Eε̂t{gt+1(X̂t + ε̂t)} . (356)

Formula (356) is the mean of a non-linear transformation of ε̂t and we know how to approximate it, by the
theory of Chapter 5. In fact, since E{ε̂t} = 0 and Cε̂t is known we can build the σ-points of ε̂t substituting it with
an unscented variable ε̂′t, having the same 0 mean and the same covariance. So (356) becomes

X̃t+1
∼= E′{gt+1(X̂t + ε̂′t)} (357)
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where we have denoted with E′ the average with respect to ε̂′t.

Switching to the prediction of E{Xt+1 − X̃t+1|δYt+1}, we first observe that

E{Xt+1 − X̃t+1|δYt+1} = E{ε̃t+1|δYt+1} (358)

On the other hand, we know that

E{ε̃t+1|δYt+1
} = Cε̃t+1δYt+1

C−1
δYt+1

δYt+1 , (359)

according to the (approximate) normal distribution hypothesis of all the variates. So we need Ỹt+1, to compute
δYt+1, and Cε̃t+1δYt+1

, CδYt+1 . For this purpose we need to transform ε̃t+1 into ε̃′t+1, i.e., since E{ε̃t+1} = 0, we
need Cε̃t+1

.

As ε̃t+1 is independent of It and gt+1(Xt) is independent of νt+1, recalling also (349), we get

Cε̃t+1
= E{(Xt+1 − X̃t+1)(Xt+1 − X̃t+1)

T } = (360)

= E{(Xt+1 − X̃t+1)(Xt+1 − X̃t+1)
T |It} =

= E{[gt+1(X̂t + ε̂t)− X̃t+1][gt+1(X̂t + ε̂t)− X̃t+1]
T }+

+Qt+1Cνt+1
QT

t+1 ;

let us underline that in the last line of (360) X̂t has to be considered as a constant, due to the conditioning on
It, while the average E applies only to ε̂t. Now we substitute ε̂t with the unscented ε̂′t, that we have already

constructed to compute X̃t+1, and E with E′. Therefore (360), with its last term, becomes a computable formula
and Cε̃t+1

is known, with the approximation pertaining to the chosen Unscented Transform.
For reasons that will become soon clear, it is convenient to compute already now the cross-variance Cε̃t+1ε̂t .
We have, by reasoning always conditionally to It,

Cε̃t+1ε̂t = E{ε̃t+1ε̂
T
t } = E{[gt+1(X̂t + ε̂t)− X̃t+1 + νt+1]ε̂

T
t |It} =

= E′{[gt+1(X̂t + ε̂t)− X̃t+1]ε̂
T
t } , (361)

where E′ means that the average has to be taken with respect to ε̂t only and X̂t, X̃t+1 have to be considered as
constant vectors. Indeed formula (361) can be implemented by using the σ-points of ε̂.

At this point we have the full covariance matrix

C∣∣∣∣∣∣ε̃t+1

ε̂t

∣∣∣∣∣∣
=

∣∣∣∣ Cε̃t+1
Cε̃t+1ε̂t

Cε̂tε̃t+1
Cε̂t

∣∣∣∣ (362)

and so, also recalling that both variables have zero mean, we can define the joint σ-points of

∣∣∣∣ε̃t+1

ε̂t

∣∣∣∣ as well as its

unscented counterpart

∣∣∣∣ε̃′t+1

ε̂′t

∣∣∣∣; one has to notice that these new ε̂′t,i do not coincide with those previously defined,

yet if we reverse the order and build the block matrix Cε̂t , Cε̂tε̃t+1
, Cε̃t+1

to compute the σ-points of

∣∣∣∣ ε̂t
ε̃t+1

∣∣∣∣, we see

that we can profitably use the Cholesky decomposition of Cε̂t and the already computed σ-points of ε̂t. At this

point we can switch to compute Ỹt+1 by

Ỹt+1 = E{ht+1(Xt+1)|It}+ E{ηt+1|It} = (363)

= E{ht+1(X̃t+1 + ε̃t+1)|It} =

∼= E′{ht+1(X̃t+1 + ε̃′t+1)} ,

where X̃t+1 is constant (known) and E′ applies only to ε̃′t+1. Therefore Ỹt+1 can now be computed and so δYt+1 is
known too.

Then we can write

δYt+1 = ht+1(Xt+1)− Ỹt+1 + ηt+1 . (364)
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where Ỹt+1 = E{Yt+1|It}. Indeed ht+1 − Ỹt+1 and ηt+1 are each independent of It; moreover, they are clearly
independent of one another.

Therefore

CδYt+1
= Cht+1−Ỹt+1

+ Cηt+1
. (365)

On the other side, applying again (349),

Cht+1−Ỹt+1
= E{[ht+1(Xt+1)− Ỹt+1][ht+1(Xt+1)− Ỹt+1]

T } = (366)

= E{[ht+1(Xt+1)− Ỹt+1][ht+1(Xt+1)− Ỹt+1]
T |It} =

= E{[ht+1(X̃t+1 + ε̃t+1)− Ỹt+1][ht+1(X̃t+1 + ε̃t+1)− Ỹt+1|It} =

∼= E′{[ht+1(X̃t+1 + ε̃′t+1)− Ỹt+1][ht+1(X̃t+1 + ε̃′t+1)− Ỹt+1} .

Once more, under E′, X̃t+1 and Ỹt+1 have to be considered constant due to conditioning. Then Cht+1−Ỹt+1
can be

computed and CδYt+1
too. Finally, since we have already constructed the Unscented, discrete variables ε̃′t+1, ε̂

′
t it

becomes straightforward to compute

Cε̃t+1δYt+1
= E{ε̃t+1δY

T
t+1} . (367)

In fact, since ε̃t+1, δYt+1 are independent of It,

E{ε̃t+1δY
T
t+1} = E{[gt+1(X̂t + ε̂t)− X̃t+1 + νt+1][ht+1(X̃t+1 + ε̃t+1) +

−Ỹt+1 + ηt+1]
T |It} = (368)

= E{[g(X̂t + ε̂t)− X̃t+1][ht+1(X̃t+1 + ε̃t+1)− Ỹt+1]
T } ,

and this average can be computed with the joint unscented variable

∣∣∣∣ε̃′t+1

ε̂′t

∣∣∣∣. As before, X̂t, X̃t+1 have to be taken

as constant in (368).
Wrapping up into (352), (359), we have all the elements to compute

X̂t+1 = X̃t+1 + Cε̃t+1δYt+1
C−1

δYt+1
δYt+1 . (369)

To conclude our step from time t to time t+ 1 we need the covariance matrix Cε̂t+1
. Here we reason as we did

in Chapter 4; from (369) we have

ε̂t+1 = ε̃t+1 − Cε̃t+1δYt+1
C−1

δYt+1
δYt+1 , (370)

or, setting Lt+1 = Cε̃t+1δYt+1
C−1

δYt+1
,

ε̃t+1 = ε̂t+1 + Lt+1δYt+1 . (371)

But δYt+1 ∈ L2(Nt+1, It+1) while ε̂t+1 is orthogonal to this space, so that

Cε̃t+1
= Cε̂t+1

+ Lt+1Cδyt+1
LT
t+1 = (372)

= Cε̂t+1
+ Cε̃t+1δYt+1

C−1
δYt+1

CδYt+1ε̃t+1
,

which gives

Cε̂t+1
= Cε̃t+1

− Cε̃t+1δYt+1
C−1

δYt+1
CδYt+1ε̃t+1

, (373)

where all matrices have already been computed and are therefore known. The step of transition from t to t+ 1 of
the Unscented Kalman Filter is completed. To summarize the procedure we represent it in Fig. 6.
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Figure 6: Scheme of the Unscented Kalman Filter; rectangles: computed quantities; ellipses: Discrete Random
Variables.

Remark 19. As already stated in Proposition 7 of Chapter 2, an equivalent interpretation of Kalman Filtering
can be given in terms of a least squares solution of the updating, based on the predicted state X̃t+1 and its error
covariance matrix Cε̃t+1

, and on the innovation information δYt+1 with its error covariance matrix Cηt+1 . In Chapter
2 the context was that of the linear Kalman Filter, yet the same remark holds in the framework of non-linear filtering,
although the least squares method is difficult to apply here for a general non-linear model of the dynamics. In fact,
let us recall that by definition

X̃t+1 = E{gt+1(X̂t + ε̂t)|It} (374)

where the conditioning to It makes X̂t a constant vector, while ε̂t is a zero mean normal variate with covariance
Cε̂t .

So for a general vector function gt+1(·) it is difficult to compute (374), if not impossible in exact form. Never-
theless, if the dynamic model is linear, as it happens when it represents just a “smoothing” of the trajectory {Xt},
since E{ε̂t} = 0, one can put

X̃t+1 = Dt+1X̂t , (375)

i.e. X̃t+1 is computable and the least squares approach can be followed without any further ado even if the
observation equations

Yt+1 = ht+1(Xt) + ηt+1 (376)

have a non-linear form.

Example 7. A trolley is moving along a rectilinear rail with constant velocity and random fluctuations, as illustrated
in Figure (7). At time t = 0 the trolley is moving from the origin, X0 = −120m , position known without error.
The trolley is moving with constant velocity of 1m/s along x axis, with the addition of a white noise of ±0.1m
(Figure 8).
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Figure 7: Example schema.

The objective is to set up a Kalman Filter to get at every time the best estimate of the position, based on all
the previous measurements. Given the presence of a station at [0, 10]m, our Kalman Filter’s observations will
be the distances between the trolley and the station at each epoch: this is analogous to Time of Arrival (ToA)
measurements. To make the scenario more practical , these observations are intentionally imbued with noise:
the measurement noise level is equal to ±0.1m, mirroring real-world conditions. In this example, the model is
represented by the equation

Xt+1 = Dt+1Xt + ut+1 +Qt+1vt+1 (377)

while the observations are expressed through the equation

Yt+1 = h(Xt+1) + νt+1; (378)

where:

X =
∣∣x∣∣ , D =

[
1
]
, u =

[
1m/s · 1s

]
, Q =

[
1
]
, h =

√
x2 + y2BS . (379)

The problem is linear in the dynamic model but not linear in the observation equations. Note that the model of the
example is very simple, just to allow an elementary check. Note also that the velocity is kept as a known constant
while, typically, in more realistic applications is itself part of the state vector to be estimated. Commencing from
these noise-affected distances, we estimated the position estimation of the trolley by employing the three different
Kalman algorithms described in the text:

• Extended Kalman Filter (EKF),

• Unscented Kalman Filter according to Julier and Uhlmann (2004)(JU-UKF),

• Normo-Kurtic Unscented Kalman Filter as discussed in this paper (NK-UKF).

In this specific example, JU-UKF generates three σ points as follows:

χ0 = x̂t−1

χ1 = x̂t−1 +
√
2 + λ · T1 χ2 = x̂t−1 −

√
2 + λ · T1

(380)
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Figure 8: Trajectory: differences (random walk) between the simulated and the nominal trajectory.

λ is a scaling parameter with λ ∈ R computed according to Julier and Uhlmann and Ti represents the i-th column
of matrix T which is derived from a Cholesky decomposition applied to the covariance matrix. In our case:

T = T1 =
[
0.1

]
. (381)

Similarly, NK-UKF generates three σ points as follows:

χ0 = x̂t−1

χ1 = x̂t−1 +
√
3 · T1 χ2 = x̂t−1 −

√
3 · T1

(382)

In the first case the model’s standard deviation v and the standard deviation of the observations ν are set to 0.1m
each. We conducted a comparative analysis of the three filters to assess their accuracy.

Error EKF JU-UKF NK-UKF
Mean (m) -0.02 -0.02 -0.04
Standard deviation (m) 0.11 0.10 0.12
Max (m) 0.53 0.54 0.55

Table 1: Example 7. Error statistics using EKF, JU-UKF and NK-UKF.

Table 1 displays the statistics for the error in x-component for all the employed algorithms. In Figure 9, you
can observe the corresponding plots of the errors for the three filters.

In conclusion, as it was easy to predict, at the level of this elementary example the results of the three methods
are very similar. As expected, the maximum errors are present around x = 0, where the observation equations are
ill conditioned with respect to the unknown. In particular, no advantage is visible due to the use of the Normo
Kurtic unscented filter. More tests will be needed to investigate more complex scenarios.
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Figure 9: Example 7. X Errors for EKF (above) JU-UKF (middle) and NK-UKF (bottom) filters.
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7 Appendix

In the text we have often used the hypothesis of a normal approximation of the distribution of (X,Y ) with the
purpose of using the approximate relation

E{X|Y } ∼= X|Y = µX + CXY C
−1
Y (Y − µY ) . (383)

In reality the quality of the approximation in (383) depends on how much “linear” is

X(Y ) = E{X|Y } (384)

at least in a zone around µY with very high probability. To quantify such error is relatively easy. Let us call

X(Y ) = X|Y , (385)

then we can set up an index for the linearization error, with the formula

LE2 = E
Y
{|X(Y )−XL(Y )|2} (386)

To compute (386) we consider the residual errors of the approximations of X with X(Y ) and with XL(Y ),

ε = X −X(Y ) , εL = X −XL(Y ) (387)

and their mean squared values

E{|ε|2} = Tr(Cε) (388)

E{|εL|2} = Tr(CεL) = Tr(CXY C
−1
Y CY X) . (389)

Now we observe that

Tr(CεL) = E{|X −XL(Y )|2} = E{|X −X(Y ) +X(Y )−XL(Y )|2} =

= E{|X −X(Y )|2}+ E{|X(Y )−XL(Y )|2}+
+2E{[X(Y )−XL(Y )]T [X −X(Y )]}

= Tr(Cε) + LE2 , (390)

because, considering that X(Y )−XL(Y ) is function of Y only,

E{[X(Y )−XL(Y )]T [X −X(Y )]} =

= E
Y
{[X(Y )−XL(Y )]TE{X −X(Y )|Y }} = 0 . (391)

Therefore (390) gives

LE2 = Tr(CεL)− Tr(Cε) . (392)

An elementary example will help appreciating the above discussion.

Example 8. Let (X,Y ) ∈ R2 have a p.d.f. defined by

fXY (x, y) = fX |Y (x|y)fY (y)

fY (y) = 1/2χ[−1,1](y) =

{
1/2 |y| < 1
0 |y| > 1

fX|Y (x|y) ∼ N (X(y), 1)

X(y) = y + 0.1 y2

so that X(y) is “almost” linear where fY (y) ̸= 0.
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An elementary computation gives

µY = 0

µX = E
Y
{X(Y )} =

0.1

3

σXY = E{XY } = E
Y
{Y X(Y )} =

1

3
, σ2(Y ) =

1

3

so that the linear regressor of X on Y is

XL(Y ) =
0.1

3
+

σXY

σ2
Y

Y

Therefore

X(Y )−XL(Y ) = 0.1

(
Y 2 − 1

3

)
and

LE2 = 0.01 E
Y

{
Y 4 − 2

3
Y 2 +

1

9

}
= 0.009 ,

namely LE = 0.094, which is small compared to

σεL =
σXY

σY
= 0.577 .
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